Detecting out-of-scope user utterances is essential for task-oriented dialogues and intent classification. Current methodologies face difficulties with the unpredictable distribution of outliers and often rely on assumptions about data distributions. We present the Dual Encoder for Threshold-Based Re-Classification (DETER) to address these challenges. This end-to-end framework efficiently detects out-of-scope intents without requiring assumptions on data distributions or additional post-processing steps. The core of DETER utilizes dual text encoders, the Universal Sentence Encoder (USE) and the Transformer-based Denoising AutoEncoder (TSDAE), to generate user utterance embeddings, which are classified through a branched neural architecture. Further, DETER generates synthetic outliers using self-supervision and incorporates out-of-scope phrases from open-domain datasets. This approach ensures a comprehensive training set for out-of-scope detection. Additionally, a threshold-based re-classification mechanism refines the model's initial predictions. Evaluations on the CLINC-150, Stackoverflow, and Banking77 datasets demonstrate DETER's efficacy. Our model outperforms previous benchmarks, increasing up to 13% and 5% in F1 score for known and unknown intents on CLINC-150 and Stackoverflow, and 16% for known and 24% % for unknown intents on Banking77. The source code has been released at //github.com/Hossam-Mohammed-tech/Intent_Classification_OOS.
Trigger-Action Programming (TAP) is a popular end-user programming framework in the home automation (HA) system, which eases users to customize home automation and control devices as expected. However, its simplified syntax also introduces new safety threats to HA systems through vulnerable rule interactions. Accurately fixing these vulnerabilities by logically and physically eliminating their root causes is essential before rules are deployed. However, it has not been well studied. In this paper, we present TAPFixer, a novel framework to automatically detect and repair rule interaction vulnerabilities in HA systems. It extracts TAP rules from HA profiles, translates them into an automaton model with physical and latency features, and performs model checking with various correctness properties. It then uses a novel negated-property reasoning algorithm to automatically infer a patch via model abstraction and refinement and model checking based on negated-properties. We evaluate TAPFixer on market HA apps (1177 TAP rules and 53 properties) and find that it can achieve an 86.65% success rate in repairing rule interaction vulnerabilities. We additionally recruit 23 HA users to conduct a user study that demonstrates the usefulness of TAPFixer for vulnerability repair in practical HA scenarios.
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to-SQL task. Previous works generally focus on using exclusive SQL generation prompt to improve the LLMs' reasoning ability. However, they are mostly hard to handle large databases with numerous tables and columns, and usually ignore the significance of pre-processing database and extracting valuable information for more efficient prompt engineering. Based on above analysis, we propose RB-SQL, a novel retrieval-based LLM framework for in-context prompt engineering, which consists of three modules that retrieve concise tables and columns as schema, and targeted examples for in-context learning. Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
Multi-resolution methods such as Adaptive Mesh Refinement (AMR) can enhance storage efficiency for HPC applications generating vast volumes of data. However, their applicability is limited and cannot be universally deployed across all applications. Furthermore, integrating lossy compression with multi-resolution techniques to further boost storage efficiency encounters significant barriers. To this end, we introduce an innovative workflow that facilitates high-quality multi-resolution data compression for both uniform and AMR simulations. Initially, to extend the usability of multi-resolution techniques, our workflow employs a compression-oriented Region of Interest (ROI) extraction method, transforming uniform data into a multi-resolution format. Subsequently, to bridge the gap between multi-resolution techniques and lossy compressors, we optimize three distinct compressors, ensuring their optimal performance on multi-resolution data. Lastly, we incorporate an advanced uncertainty visualization method into our workflow to understand the potential impacts of lossy compression. Experimental evaluation demonstrates that our workflow achieves significant compression quality improvements.
Low-resource extractive text summarization is a vital but heavily underexplored area of research. Prior literature either focuses on abstractive text summarization or prompts a large language model (LLM) like GPT-3 directly to generate summaries. In this work, we propose MixSumm for low-resource extractive text summarization. Specifically, MixSumm prompts an open-source LLM, LLaMA-3-70b, to generate documents that mix information from multiple topics as opposed to generating documents without mixup, and then trains a summarization model on the generated dataset. We use ROUGE scores and L-Eval, a reference-free LLaMA-3-based evaluation method to measure the quality of generated summaries. We conduct extensive experiments on a challenging text summarization benchmark comprising the TweetSumm, WikiHow, and ArXiv/PubMed datasets and show that our LLM-based data augmentation framework outperforms recent prompt-based approaches for low-resource extractive summarization. Additionally, our results also demonstrate effective knowledge distillation from LLaMA-3-70b to a small BERT-based extractive summarizer.
Model-Based Engineering (MBE) has streamlined software development by focusing on abstraction and automation. The adoption of MBE in Maintenance and Evolution (MBM&E), however, is still limited due to poor tool support and a lack of perceived benefits. We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of MBM&E. In this sense, we argue that GenAI, driven by Foundation Models, offers promising potential for enhancing MBM&E tasks. With this possibility in mind, we introduce a research vision that contains a classification scheme for GenAI approaches in MBM&E considering two main aspects: (i) the level of augmentation provided by GenAI and (ii) the experience of the engineers involved. We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems. Furthermore, we outline challenges in this field as a research agenda to drive scientific and practical future solutions. With this proposed vision, we aim to bridge the gap between GenAI and MBM&E, presenting a structured and sophisticated way for advancing MBM&E practices.
Relative localization is crucial for multi-robot systems to perform cooperative tasks, especially in GPS-denied environments. Current techniques for multi-robot relative localization rely on expensive or short-range sensors such as cameras and LIDARs. As a result, these algorithms face challenges such as high computational complexity (e.g., map merging), dependencies on well-structured environments, etc. To remedy this gap, we propose a new distributed approach to perform relative localization (RL) using a common Access Point (AP). To achieve this efficiently, we propose a novel Hierarchical Gaussian Processes (HGP) mapping of the Radio Signal Strength Indicator (RSSI) values from a Wi-Fi AP to which the robots are connected. Each robot performs hierarchical inference using the HGP map to locate the AP in its reference frame, and the robots obtain relative locations of the neighboring robots leveraging AP-oriented algebraic transformations. The approach readily applies to resource-constrained devices and relies only on the ubiquitously-available WiFi RSSI measurement. We extensively validate the performance of the proposed HGR-PL in Robotarium simulations against several state-of-the-art methods. The results indicate superior performance of HGP-RL regarding localization accuracy, computation, and communication overheads. Finally, we showcase the utility of HGP-RL through a multi-robot cooperative experiment to achieve a rendezvous task in a team of three mobile robots.
Temporal data, notably time series and spatio-temporal data, are prevalent in real-world applications. They capture dynamic system measurements and are produced in vast quantities by both physical and virtual sensors. Analyzing these data types is vital to harnessing the rich information they encompass and thus benefits a wide range of downstream tasks. Recent advances in large language and other foundational models have spurred increased use of these models in time series and spatio-temporal data mining. Such methodologies not only enable enhanced pattern recognition and reasoning across diverse domains but also lay the groundwork for artificial general intelligence capable of comprehending and processing common temporal data. In this survey, we offer a comprehensive and up-to-date review of large models tailored (or adapted) for time series and spatio-temporal data, spanning four key facets: data types, model categories, model scopes, and application areas/tasks. Our objective is to equip practitioners with the knowledge to develop applications and further research in this underexplored domain. We primarily categorize the existing literature into two major clusters: large models for time series analysis (LM4TS) and spatio-temporal data mining (LM4STD). On this basis, we further classify research based on model scopes (i.e., general vs. domain-specific) and application areas/tasks. We also provide a comprehensive collection of pertinent resources, including datasets, model assets, and useful tools, categorized by mainstream applications. This survey coalesces the latest strides in large model-centric research on time series and spatio-temporal data, underscoring the solid foundations, current advances, practical applications, abundant resources, and future research opportunities.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.