Inferring the effect of interventions within complex systems is a fundamental problem of statistics. A widely studied approach employs structural causal models that postulate noisy functional relations among a set of interacting variables. The underlying causal structure is then naturally represented by a directed graph whose edges indicate direct causal dependencies. In a recent line of work, additional assumptions on the causal models have been shown to render this causal graph identifiable from observational data alone. One example is the assumption of linear causal relations with equal error variances that we will take up in this work. When the graph structure is known, classical methods may be used for calculating estimates and confidence intervals for causal effects. However, in many applications, expert knowledge that provides an a priori valid causal structure is not available. Lacking alternatives, a commonly used two-step approach first learns a graph and then treats the graph as known in inference. This, however, yields confidence intervals that are overly optimistic and fail to account for the data-driven model choice. We argue that to draw reliable conclusions, it is necessary to incorporate the remaining uncertainty about the underlying causal structure in confidence statements about causal effects. To address this issue, we present a framework based on test inversion that allows us to give confidence regions for total causal effects that capture both sources of uncertainty: causal structure and numerical size of nonzero effects.
Recently developed survival analysis methods improve upon existing approaches by predicting the probability of event occurrence in each of a number pre-specified (discrete) time intervals. By avoiding placing strong parametric assumptions on the event density, this approach tends to improve prediction performance, particularly when data are plentiful. However, in clinical settings with limited available data, it is often preferable to judiciously partition the event time space into a limited number of intervals well suited to the prediction task at hand. In this work, we develop a method to learn from data a set of cut points defining such a partition. We show that in two simulated datasets, we are able to recover intervals that match the underlying generative model. We then demonstrate improved prediction performance on three real-world observational datasets, including a large, newly harmonized stroke risk prediction dataset. Finally, we argue that our approach facilitates clinical decision-making by suggesting time intervals that are most appropriate for each task, in the sense that they facilitate more accurate risk prediction.
Two-stage stochastic optimization is a framework for modeling uncertainty, where we have a probability distribution over possible realizations of the data, called scenarios, and decisions are taken in two stages: we make first-stage decisions knowing only the underlying distribution and before a scenario is realized, and may take additional second-stage recourse actions after a scenario is realized. The goal is typically to minimize the total expected cost. A criticism of this model is that the underlying probability distribution is itself often imprecise! To address this, a versatile approach that has been proposed is the {\em distributionally robust 2-stage model}: given a collection of probability distributions, our goal now is to minimize the maximum expected total cost with respect to a distribution in this collection. We provide a framework for designing approximation algorithms in such settings when the collection is a ball around a central distribution and the central distribution is accessed {\em only via a sampling black box}. We first show that one can utilize the {\em sample average approximation} (SAA) method to reduce the problem to the case where the central distribution has {\em polynomial-size} support. We then show how to approximately solve a fractional relaxation of the SAA (i.e., polynomial-scenario central-distribution) problem. By complementing this via LP-rounding algorithms that provide {\em local} (i.e., per-scenario) approximation guarantees, we obtain the {\em first} approximation algorithms for the distributionally robust versions of a variety of discrete-optimization problems including set cover, vertex cover, edge cover, facility location, and Steiner tree, with guarantees that are, except for set cover, within $O(1)$-factors of the guarantees known for the deterministic version of the problem.
Despite their popularity in the field of continuous optimisation, second-order quasi-Newton methods are challenging to apply in machine learning, as the Hessian matrix is intractably large. This computational burden is exacerbated by the need to address non-convexity, for instance by modifying the Hessian's eigenvalues as in Saddle-Free Newton methods. We propose an optimisation algorithm which addresses both of these concerns - to our knowledge, the first efficiently-scalable optimisation algorithm to asymptotically use the exact (eigenvalue-modified) inverse Hessian. Our method frames the problem as a series which principally square-roots and inverts the squared Hessian, then uses it to precondition a gradient vector, all without explicitly computing or eigendecomposing the Hessian. A truncation of this infinite series provides a new optimisation algorithm which is scalable and comparable to other first- and second-order optimisation methods in both runtime and optimisation performance. We demonstrate this in a variety of settings, including a ResNet-18 trained on CIFAR-10.
Data preprocessing is a crucial part of any machine learning pipeline, and it can have a significant impact on both performance and training efficiency. This is especially evident when using deep neural networks for time series prediction and classification: real-world time series data often exhibit irregularities such as multi-modality, skewness and outliers, and the model performance can degrade rapidly if these characteristics are not adequately addressed. In this work, we propose the EDAIN (Extended Deep Adaptive Input Normalization) layer, a novel adaptive neural layer that learns how to appropriately normalize irregular time series data for a given task in an end-to-end fashion, instead of using a fixed normalization scheme. This is achieved by optimizing its unknown parameters simultaneously with the deep neural network using back-propagation. Our experiments, conducted using synthetic data, a credit default prediction dataset, and a large-scale limit order book benchmark dataset, demonstrate the superior performance of the EDAIN layer when compared to conventional normalization methods and existing adaptive time series preprocessing layers.
In autonomous driving, deep learning enabled motion prediction is a popular topic. A critical gap in traditional motion prediction methodologies lies in ensuring equivariance under Euclidean geometric transformations and maintaining invariant interaction relationships. This research introduces a groundbreaking solution by employing EqMotion, a theoretically geometric equivariant and interaction invariant motion prediction model for particles and humans, plus integrating agent-equivariant high-definition (HD) map features for context aware motion prediction in autonomous driving. The use of EqMotion as backbone marks a significant departure from existing methods by rigorously ensuring motion equivariance and interaction invariance. Equivariance here implies that an output motion must be equally transformed under the same Euclidean transformation as an input motion, while interaction invariance preserves the manner in which agents interact despite transformations. These properties make the network robust to arbitrary Euclidean transformations and contribute to more accurate prediction. In addition, we introduce an equivariant method to process the HD map to enrich the spatial understanding of the network while preserving the overall network equivariance property. By applying these technologies, our model is able to achieve high prediction accuracy while maintain a lightweight design and efficient data utilization.
Reliable and efficient trajectory optimization methods are a fundamental need for autonomous dynamical systems, effectively enabling applications including rocket landing, hypersonic reentry, spacecraft rendezvous, and docking. Within such safety-critical application areas, the complexity of the emerging trajectory optimization problems has motivated the application of AI-based techniques to enhance the performance of traditional approaches. However, current AI-based methods either attempt to fully replace traditional control algorithms, thus lacking constraint satisfaction guarantees and incurring in expensive simulation, or aim to solely imitate the behavior of traditional methods via supervised learning. To address these limitations, this paper proposes the Autonomous Rendezvous Transformer (ART) and assesses the capability of modern generative models to solve complex trajectory optimization problems, both from a forecasting and control standpoint. Specifically, this work assesses the capabilities of Transformers to (i) learn near-optimal policies from previously collected data, and (ii) warm-start a sequential optimizer for the solution of non-convex optimal control problems, thus guaranteeing hard constraint satisfaction. From a forecasting perspective, results highlight how ART outperforms other learning-based architectures at predicting known fuel-optimal trajectories. From a control perspective, empirical analyses show how policies learned through Transformers are able to generate near-optimal warm-starts, achieving trajectories that are (i) more fuel-efficient, (ii) obtained in fewer sequential optimizer iterations, and (iii) computed with an overall runtime comparable to benchmarks based on convex optimization.
Lifelong sequence generation (LSG), a problem in continual learning, aims to continually train a model on a sequence of generation tasks to learn constantly emerging new generation patterns while avoiding the forgetting of previous knowledge. Existing LSG methods mainly focus on maintaining old knowledge while paying little attention to knowledge transfer across tasks. In contrast, humans can better learn new tasks by leveraging previously acquired knowledge from similar tasks. Inspired by the learning paradigm of humans, we propose Dynamic Module Expansion and Adaptation (DMEA), which enables the model to dynamically determine the architecture for acquiring new knowledge based on task correlation and select the most similar previous tasks to facilitate adaptation to new tasks. In addition, as the learning process can easily be biased towards the current task which might cause more severe forgetting of previously learned knowledge, we propose dynamic gradient scaling to balance the learning of the current task and replayed tasks. With extensive experiments, we demonstrate that DMEA can consistently outperform existing methods in different LSG settings.
Among the wide variety of evolutionary computing models, Finite State Machines (FSMs) have several attractions for fundamental research. They are easy to understand in concept and can be visualised clearly in simple cases. They have a ready fitness criterion through their relationship with Regular Languages. They have also been shown to be tractably evolvable, even up to exhibiting evidence of open-ended evolution in specific scenarios. In addition to theoretical attraction, they also have industrial applications, as a paradigm of both automated and user-initiated control. Improving the understanding of the factors affecting FSM evolution has relevance to both computer science and practical optimisation of control. We investigate an evolutionary scenario of FSMs adapting to recognise one of a family of Regular Languages by categorising positive and negative samples, while also being under a counteracting selection pressure that favours fewer states. The results appear to indicate that longer strings provided as samples reduce the speed of fitness gain, when fitness is measured against a fixed number of sample strings. We draw the inference that additional information from longer strings is not sufficient to compensate for sparser coverage of the combinatorial space of positive and negative sample strings.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.