亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

External and internal convertible (EIC) form-based motion control (i.e., EIC-based control) is one of the effective approaches for underactuated balance robots. By sequentially controller design, trajectory tracking of the actuated subsystem and balance of the unactuated subsystem can be achieved simultaneously. However, with certain conditions, there exists uncontrolled robot motion under the EIC-based control. We first identify these conditions and then propose an enhanced EIC-based control with a Gaussian process data-driven robot dynamic model. Under the new enhanced EIC-based control, the stability and performance of the closed-loop system is guaranteed. We demonstrate the GP-enhanced EIC-based control experimentally using two examples of underactuated balance robots.

相關內容

In the realm of machine and deep learning regression tasks, the role of effective feature engineering (FE) is pivotal in enhancing model performance. Traditional approaches of FE often rely on domain expertise to manually design features for machine learning models. In the context of deep learning models, the FE is embedded in the neural network's architecture, making it hard for interpretation. In this study, we propose to integrate symbolic regression (SR) as an FE process before a machine learning model to improve its performance. We show, through extensive experimentation on synthetic and real-world physics-related datasets, that the incorporation of SR-derived features significantly enhances the predictive capabilities of both machine and deep learning regression models with 34-86% root mean square error (RMSE) improvement in synthetic datasets and 4-11.5% improvement in real-world datasets. In addition, as a realistic use-case, we show the proposed method improves the machine learning performance in predicting superconducting critical temperatures based on Eliashberg theory by more than 20% in terms of RMSE. These results outline the potential of SR as an FE component in data-driven models.

Fast inverse kinematics (IK) is a central component in robotic motion planning. For complex robots, IK methods are often based on root search and non-linear optimization algorithms. These algorithms can be massively sped up using a neural network to predict a good initial guess, which can then be refined in a few numerical iterations. Besides previous work on learning-based IK, we present a learning approach for the fundamentally more complex problem of IK with collision avoidance. We do this in diverse and previously unseen environments. From a detailed analysis of the IK learning problem, we derive a network and unsupervised learning architecture that removes the need for a sample data generation step. Using the trained network's prediction as an initial guess for a two-stage Jacobian-based solver allows for fast and accurate computation of the collision-free IK. For the humanoid robot, Agile Justin (19 DoF), the collision-free IK is solved in less than 10 milliseconds (on a single CPU core) and with an accuracy of 10^-4 m and 10^-3 rad based on a high-resolution world model generated from the robot's integrated 3D sensor. Our method massively outperforms a random multi-start baseline in a benchmark with the 19 DoF humanoid and challenging 3D environments. It requires ten times less training time than a supervised training method while achieving comparable results.

To facilitate efficient learning, policy gradient approaches to deep reinforcement learning (RL) are typically paired with variance reduction measures and strategies for making large but safe policy changes based on a batch of experiences. Natural policy gradient methods, including Trust Region Policy Optimization (TRPO), seek to produce monotonic improvement through bounded changes in policy outputs. Proximal Policy Optimization (PPO) is a commonly used, first-order algorithm that instead uses loss clipping to take multiple safe optimization steps per batch of data, replacing the bound on the single step of TRPO with regularization on multiple steps. In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective. Instead of the importance sampling objective of PPO, we instead recommend a basic policy gradient, clipped in an equivalent fashion. While both objectives produce biased gradient estimates with respect to the RL objective, they also both display significantly reduced variance compared to the unbiased off-policy policy gradient. Additionally, we show that (1) the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration. As a result, we empirically observe that COPG produces improved learning compared to PPO in single-task, constrained, and multi-task learning, without adding significant computational cost or complexity. Compared to TRPO, the COPG approach is seen to offer comparable or superior performance, while retaining the simplicity of a first-order method.

In the high performance computing (HPC) domain, performance variability is a major scalability issue for parallel computing applications with heavy synchronization and communication. In this paper, we present an experimental performance analysis of OpenMP benchmarks regarding the variation of execution time, and determine the potential factors causing performance variability. Our work offers some understanding of performance distributions and directions for future work on how to mitigate variability for OpenMP-based applications. Two representative OpenMP benchmarks from the EPCC OpenMP micro-benchmark suite and BabelStream are run across two x86 multicore platforms featuring up to 256 threads. From the obtained results, we characterize and explain the execution time variability as a function of thread-pinning, simultaneous multithreading (SMT) and core frequency variation.

Although randomized controlled trials (RCTs) are a cornerstone of comparative effectiveness, they typically have much smaller sample size than observational studies because of financial and ethical considerations. Therefore there is interest in using plentiful historical data (either observational data or prior trials) to reduce trial sizes. Previous estimators developed for this purpose rely on unrealistic assumptions, without which the added data can bias the treatment effect estimate. Recent work proposed an alternative method (prognostic covariate adjustment) that imposes no additional assumptions and increases efficiency in trial analyses. The idea is to use historical data to learn a prognostic model: a regression of the outcome onto the covariates. The predictions from this model, generated from the RCT subjects' baseline variables, are then used as a covariate in a linear regression analysis of the trial data. In this work, we extend prognostic adjustment to trial analyses with nonparametric efficient estimators, which are more powerful than linear regression. We provide theory that explains why prognostic adjustment improves small-sample point estimation and inference without any possibility of bias. Simulations corroborate the theory: efficient estimators using prognostic adjustment compared to without provides greater power (i.e., smaller standard errors) when the trial is small. Population shifts between historical and trial data attenuate benefits but do not introduce bias. We showcase our estimator using clinical trial data provided by Novo Nordisk A/S that evaluates insulin therapy for individuals with type II diabetes.

We propose a novel approach to the statistical analysis of stochastic simulation models and, especially, agent-based models (ABMs). Our main goal is to provide fully automated, model-independent and tool-supported techniques and algorithms to inspect simulations and perform counterfactual analysis. Our approach: (i) is easy-to-use by the modeller, (ii) improves reproducibility of results, (iii) optimizes running time given the modeller's machine, (iv) automatically chooses the number of required simulations and simulation steps to reach user-specified statistical confidence, and (v) automates a variety of statistical tests. In particular, our techniques are designed to distinguish the transient dynamics of the model from its steady-state behaviour (if any), estimate properties in both 'phases', and provide indications on the (non-)ergodic nature of the simulated processes - which, in turn, allows one to gauge the reliability of a steady-state analysis. Estimates are equipped with statistical guarantees, allowing for robust comparisons across computational experiments. To demonstrate the effectiveness of our approach, we apply it to two models from the literature: a large-scale macro-financial ABM and a small scale prediction market model. Compared to prior analyses of these models, we obtain new insights and we are able to identify and fix some erroneous conclusions.

Generalized quantifiers (e.g., few, most) are used to indicate the proportions predicates are satisfied (for example, some apples are red). One way to interpret quantifier semantics is to explicitly bind these satisfactions with percentage scopes (e.g., 30%-40% of apples are red). This approach can be helpful for tasks like logic formalization and surface-form quantitative reasoning (Gordon and Schubert, 2010; Roy et al., 2015). However, it remains unclear if recent foundation models possess this ability, as they lack direct training signals. To explore this, we introduce QuRe, a crowd-sourced dataset of human-annotated generalized quantifiers in Wikipedia sentences featuring percentage-equipped predicates. We explore quantifier comprehension in language models using PRESQUE, a framework that combines natural language inference and the Rational Speech Acts framework. Experimental results on the HVD dataset and QuRe illustrate that PRESQUE, employing pragmatic reasoning, performs 20% better than a literal reasoning baseline when predicting quantifier percentage scopes, with no additional training required.

Designing and analyzing model-based RL (MBRL) algorithms with guaranteed monotonic improvement has been challenging, mainly due to the interdependence between policy optimization and model learning. Existing discrepancy bounds generally ignore the impacts of model shifts, and their corresponding algorithms are prone to degrade performance by drastic model updating. In this work, we first propose a novel and general theoretical scheme for a non-decreasing performance guarantee of MBRL. Our follow-up derived bounds reveal the relationship between model shifts and performance improvement. These discoveries encourage us to formulate a constrained lower-bound optimization problem to permit the monotonicity of MBRL. A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns. Motivated by these analyses, we design a simple but effective algorithm CMLO (Constrained Model-shift Lower-bound Optimization), by introducing an event-triggered mechanism that flexibly determines when to update the model. Experiments show that CMLO surpasses other state-of-the-art methods and produces a boost when various policy optimization methods are employed.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司