亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A risk in adopting third-party dependencies into an application is their potential to serve as a doorway for malicious code to be injected (most often unknowingly). While many initiatives from both industry and research communities focus on the most critical dependencies (i.e., those most depended upon within the ecosystem), little is known about whether the rest of the ecosystem suffers the same fate. Our vision is to promote and establish safer practises throughout the ecosystem. To motivate our vision, in this paper, we present preliminary data based on three representative samples from a population of 88,416 pull requests (PRs) and identify unsafe dependency updates (i.e., any pull request that risks being unsafe during runtime), which clearly shows that unsafe dependency updates are not limited to highly impactful libraries. To draw attention to the long tail, we propose a research agenda comprising six key research questions that further explore how to safeguard against these unsafe activities. This includes developing best practises to address unsafe dependency updates not only in top-tier libraries but throughout the entire ecosystem.

相關內容

Imitation Learning (IL) aims to discover a policy by minimizing the discrepancy between the agent's behavior and expert demonstrations. However, IL is susceptible to limitations imposed by noisy demonstrations from non-expert behaviors, presenting a significant challenge due to the lack of supplementary information to assess their expertise. In this paper, we introduce Self-Motivated Imitation LEarning (SMILE), a method capable of progressively filtering out demonstrations collected by policies deemed inferior to the current policy, eliminating the need for additional information. We utilize the forward and reverse processes of Diffusion Models to emulate the shift in demonstration expertise from low to high and vice versa, thereby extracting the noise information that diffuses expertise. Then, the noise information is leveraged to predict the diffusion steps between the current policy and demonstrators, which we theoretically demonstrate its equivalence to their expertise gap. We further explain in detail how the predicted diffusion steps are applied to filter out noisy demonstrations in a self-motivated manner and provide its theoretical grounds. Through empirical evaluations on MuJoCo tasks, we demonstrate that our method is proficient in learning the expert policy amidst noisy demonstrations, and effectively filters out demonstrations with expertise inferior to the current policy.

Formal verification of multi-agent systems is hard, both theoretically and in practice. In particular, studies that use a single verification technique typically show limited efficiency, and allow to verify only toy examples. Here, we propose some new techniques and combine them with several recently developed ones to see what progress can be achieved for a real-life scenario. Namely, we use fixpoint approximation, domination-based strategy search, partial order reduction, and parallelization to verify heterogeneous scalable models of the Selene e-voting protocol. The experimental results show that the combination allows to verify requirements for much more sophisticated models than previously.

Realistic reconstruction of 3D clothing from an image has wide applications, such as avatar creation and virtual try-on. This paper presents a novel framework that reconstructs the texture map for 3D garments from a single image with pose. Assuming that 3D garments are modeled by stitching 2D garment sewing patterns, our specific goal is to generate a texture image for the sewing patterns. A key component of our framework, the Texture Unwarper, infers the original texture image from the input clothing image, which exhibits warping and occlusion of texture due to the user's body shape and pose. The Texture Unwarper effectively transforms between the input and output images by mapping the latent spaces of the two images. By inferring the unwarped original texture of the input garment, our method helps reconstruct 3D garment models that can show high-quality texture images realistically deformed for new poses. We validate the effectiveness of our approach through a comparison with other methods and ablation studies. Additionally, we release a large dataset of garment sewing patterns with textures and images of avatars wearing the garments, which will be useful for future research on garment texture reconstruction and synthesis.

Dual use, the intentional, harmful reuse of technology and scientific artefacts, is a problem yet to be well-defined within the context of Natural Language Processing (NLP). However, as NLP technologies continue to advance and become increasingly widespread in society, their inner workings have become increasingly opaque. Therefore, understanding dual use concerns and potential ways of limiting them is critical to minimising the potential harms of research and development. In this paper, we conduct a survey of NLP researchers and practitioners to understand the depth and their perspective of the problem as well as to assess existing available support. Based on the results of our survey, we offer a definition of dual use that is tailored to the needs of the NLP community. The survey revealed that a majority of researchers are concerned about the potential dual use of their research but only take limited action toward it. In light of the survey results, we discuss the current state and potential means for mitigating dual use in NLP and propose a checklist that can be integrated into existing conference ethics-frameworks, e.g., the ACL ethics checklist.

Spatial trend estimation under potential heterogeneity is an important problem to extract spatial characteristics and hazards such as criminal activity. By focusing on quantiles, which provide substantial information on distributions compared with commonly used summary statistics such as means, it is often useful to estimate not only the average trend but also the high (low) risk trend additionally. In this paper, we propose a Bayesian quantile trend filtering method to estimate the non-stationary trend of quantiles on graphs and apply it to crime data in Tokyo between 2013 and 2017. By modeling multiple observation cases, we can estimate the potential heterogeneity of spatial crime trends over multiple years in the application. To induce locally adaptive Bayesian inference on trends, we introduce general shrinkage priors for graph differences. Introducing so-called shadow priors with multivariate distribution for local scale parameters and mixture representation of the asymmetric Laplace distribution, we provide a simple Gibbs sampling algorithm to generate posterior samples. The numerical performance of the proposed method is demonstrated through simulation studies.

Code Large Language Models (Code LLMs) are being increasingly employed in real-life applications, so evaluating them is critical. While the general accuracy of Code LLMs on individual tasks has been extensively evaluated, their self-consistency across different tasks is overlooked. Intuitively, a trustworthy model should be self-consistent when generating natural language specifications for its own code and generating code for its own specifications. Failure to preserve self-consistency reveals a lack of understanding of the shared semantics underlying natural language and programming language, and therefore undermines the trustworthiness of a model. In this paper, we first formally define the self-consistency of Code LLMs and then design a framework, IdentityChain, which effectively and efficiently evaluates the self-consistency and general accuracy of a model at the same time. We study eleven Code LLMs and show that they fail to preserve self-consistency, which is indeed a distinct aspect from general accuracy. Furthermore, we show that IdentityChain can be used as a model debugging tool to expose weaknesses of Code LLMs by demonstrating three major weaknesses that we identify in current models using IdentityChain. Our code is available at //github.com/marcusm117/IdentityChain.

In inverse problems, many conditional generative models approximate the posterior measure by minimizing a distance between the joint measure and its learned approximation. While this approach also controls the distance between the posterior measures in the case of the Kullback Leibler divergence, it does not hold true for the Wasserstein distance. We will introduce a conditional Wasserstein distance with a set of restricted couplings that equals the expected Wasserstein distance of the posteriors. By deriving its dual, we find a rigorous way to motivate the loss of conditional Wasserstein GANs. We outline conditions under which the vanilla and the conditional Wasserstein distance coincide. Furthermore, we will show numerical examples where training with the conditional Wasserstein distance yields favorable properties for posterior sampling.

Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司