亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The aim of this paper is to study the complexity of the model checking problem MC for inquisitive propositional logic InqB and for inquisitive modal logic InqM, that is, the problem of deciding whether a given finite structure for the logic satisfies a given formula. In recent years, this problem has been thoroughly investigated for several variations of dependence and teams logics, systems closely related to inquisitive logic. Building upon some ideas presented by Yang, we prove that the model checking problems for InqB and InqM are both AP-complete.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Continuity · 值域 · 模型評估 · 數值分析 ·
2024 年 5 月 3 日

The two-fluid plasma model has a wide range of timescales which must all be numerically resolved regardless of the timescale on which plasma dynamics occurs. The answer to solving numerically stiff systems is generally to utilize unconditionally stable implicit time advance methods. Hybridizable discontinuous Galerkin (HDG) methods have emerged as a powerful tool for solving stiff partial differential equations. The HDG framework combines the advantages of the discontinuous Galerkin (DG) method, such as high-order accuracy and flexibility in handling mixed hyperbolic/parabolic PDEs with the advantage of classical continuous finite element methods for constructing small numerically stable global systems which can be solved implicitly. In this research we quantify the numerical stability conditions for the two-fluid equations and demonstrate how HDG can be used to avoid the strict stability requirements while maintaining high order accurate results.

Adversarial robustness and generalization are both crucial properties of reliable machine learning models. In this letter, we study these properties in the context of quantum machine learning based on Lipschitz bounds. We derive parameter-dependent Lipschitz bounds for quantum models with trainable encoding, showing that the norm of the data encoding has a crucial impact on the robustness against data perturbations. Further, we derive a bound on the generalization error which explicitly involves the parameters of the data encoding. Our theoretical findings give rise to a practical strategy for training robust and generalizable quantum models by regularizing the Lipschitz bound in the cost. Further, we show that, for fixed and non-trainable encodings, as those frequently employed in quantum machine learning, the Lipschitz bound cannot be influenced by tuning the parameters. Thus, trainable encodings are crucial for systematically adapting robustness and generalization during training. The practical implications of our theoretical findings are illustrated with numerical results.

We study the weak convergence behaviour of the Leimkuhler--Matthews method, a non-Markovian Euler-type scheme with the same computational cost as the Euler scheme, for the approximation of the stationary distribution of a one-dimensional McKean--Vlasov Stochastic Differential Equation (MV-SDE). The particular class under study is known as mean-field (overdamped) Langevin equations (MFL). We provide weak and strong error results for the scheme in both finite and infinite time. We work under a strong convexity assumption. Based on a careful analysis of the variation processes and the Kolmogorov backward equation for the particle system associated with the MV-SDE, we show that the method attains a higher-order approximation accuracy in the long-time limit (of weak order convergence rate $3/2$) than the standard Euler method (of weak order $1$). While we use an interacting particle system (IPS) to approximate the MV-SDE, we show the convergence rate is independent of the dimension of the IPS and this includes establishing uniform-in-time decay estimates for moments of the IPS, the Kolmogorov backward equation and their derivatives. The theoretical findings are supported by numerical tests.

In this work we study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry. Given $n$ points and $n$ lines in the plane, the task is to determine whether there is a point-line incidence. The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n^{4/3})$ time, with matching lower bounds in some restricted settings. Our results are two different quantum algorithms with time complexity $\widetilde O(n^{5/6})$. The first algorithm is based on partition trees and the quantum backtracking algorithm. The second algorithm uses a quantum walk together with a history-independent dynamic data structure for storing line arrangement which supports efficient point location queries. In the setting where the number of points and lines differ, the quantum walk-based algorithm is asymptotically faster. The quantum speedups for the aforementioned data structures may be useful for other geometric problems.

Efficiently enumerating all the extreme points of a polytope identified by a system of linear inequalities is a well-known challenge issue. We consider a special case and present an algorithm that enumerates all the extreme points of a bisubmodular polyhedron in $\mathcal{O}(n^4|V|)$ time and $\mathcal{O}(n^2)$ space complexity, where $n$ is the dimension of underlying space and $V$ is the set of outputs. We use the reverse search and signed poset linked to extreme points to avoid the redundant search. Our algorithm is a generalization of enumerating all the extreme points of a base polyhedron which comprises some combinatorial enumeration problems.

We establish a connection between problems studied in rigidity theory and matroids arising from linear algebraic constructions like tensor products and symmetric products. A special case of this correspondence identifies the problem of giving a description of the correctable erasure patterns in a maximally recoverable tensor code with the problem of describing bipartite rigid graphs or low-rank completable matrix patterns. Additionally, we relate dependencies among symmetric products of generic vectors to graph rigidity and symmetric matrix completion. With an eye toward applications to computer science, we study the dependency of these matroids on the characteristic by giving new combinatorial descriptions in several cases, including the first description of the correctable patterns in an (m, n, a=2, b=2) maximally recoverable tensor code.

We propose a high precision algorithm for solving the Gelfand-Levitan-Marchenko equation. The algorithm is based on the block version of the Toeplitz Inner-Bordering algorithm of Levinson's type. To approximate integrals, we use the high-precision one-sided and two-sided Gregory quadrature formulas. Also we use the Woodbury formula to construct a computational algorithm. This makes it possible to use the almost Toeplitz structure of the matrices for the fast calculations.

In this chapter, we address the challenge of exploring the posterior distributions of Bayesian inverse problems with computationally intensive forward models. We consider various multivariate proposal distributions, and compare them with single-site Metropolis updates. We show how fast, approximate models can be leveraged to improve the MCMC sampling efficiency.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司