亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gaussian graphical regressions have emerged as a powerful approach for regressing the precision matrix of a Gaussian graphical model on covariates, which, unlike traditional Gaussian graphical models, can help determine how graphs are modulated by high dimensional subject-level covariates, and recover both the population-level and subject-level graphs. To fit the model, a multi-task learning approach {achieves} %has been shown to result in lower error rates compared to node-wise regressions. However, due to the high complexity and dimensionality of the Gaussian graphical regression problem, the important task of statistical inference remains unexplored. We propose a class of debiased estimators based on multi-task learners for statistical inference in Gaussian graphical regressions. We show that debiasing can be performed quickly and separately for the multi-task learners. In a key debiasing step {that estimates} %involving the estimation of the inverse covariance matrix, we propose a novel {projection technique} %diagonalization approach that dramatically reduces computational costs {in optimization} to scale only with the sample size $n$. We show that our debiased estimators enjoy a fast convergence rate and asymptotically follow a normal distribution, enabling valid statistical inference such as constructing confidence intervals and performing hypothesis testing. Simulation studies confirm the practical utility of the proposed approach, and we further apply it to analyze gene co-expression graph data from a brain cancer study, revealing meaningful biological relationships.

相關內容

A challenge in high-dimensional inverse problems is developing iterative solvers to find the accurate solution of regularized optimization problems with low computational cost. An important example is computed tomography (CT) where both image and data sizes are large and therefore the forward model is costly to evaluate. Since several years algorithms from stochastic optimization are used for tomographic image reconstruction with great success by subsampling the data. Here we propose a novel way how stochastic optimization can be used to speed up image reconstruction by means of image domain sketching such that at each iteration an image of different resolution is being used. Hence, we coin this algorithm ImaSk. By considering an associated saddle-point problem, we can formulate ImaSk as a gradient-based algorithm where the gradient is approximated in the same spirit as the stochastic average gradient am\'elior\'e (SAGA) and uses at each iteration one of these multiresolution operators at random. We prove that ImaSk is linearly converging for linear forward models with strongly convex regularization functions. Numerical simulations on CT show that ImaSk is effective and increasing the number of multiresolution operators reduces the computational time to reach the modeled solution.

Gaussian Process differential equations (GPODE) have recently gained momentum due to their ability to capture dynamics behavior of systems and also represent uncertainty in predictions. Prior work has described the process of training the hyperparameters and, thereby, calibrating GPODE to data. How to design efficient algorithms to collect data for training GPODE models is still an open field of research. Nevertheless high-quality training data is key for model performance. Furthermore, data collection leads to time-cost and financial-cost and might in some areas even be safety critical to the system under test. Therefore, algorithms for safe and efficient data collection are central for building high quality GPODE models. Our novel Safe Active Learning (SAL) for GPODE algorithm addresses this challenge by suggesting a mechanism to propose efficient and non-safety-critical data to collect. SAL GPODE does so by sequentially suggesting new data, measuring it and updating the GPODE model with the new data. In this way, subsequent data points are iteratively suggested. The core of our SAL GPODE algorithm is a constrained optimization problem maximizing information of new data for GPODE model training constrained by the safety of the underlying system. We demonstrate our novel SAL GPODE's superiority compared to a standard, non-active way of measuring new data on two relevant examples.

Extraction of structure, in particular of group symmetries, is increasingly crucial to understanding and building intelligent models. In particular, some information-theoretic models of parsimonious learning have been argued to induce invariance extraction. Here, we formalise these arguments from a group-theoretic perspective. We then extend them to the study of more general probabilistic symmetries, through compressions preserving well-studied geometric measures of complexity. More precisely, we formalise a trade-off between compression and preservation of the divergence from a given hierarchical model, yielding a novel generalisation of the Information Bottleneck framework. Through appropriate choices of hierarchical models, we fully characterise (in the discrete and full support case) channel invariance, channel equivariance and distribution invariance under permutation. Allowing imperfect divergence preservation then leads to principled definitions of "soft symmetries", where the "coarseness" corresponds to the degree of compression of the system. In simple synthetic experiments, we demonstrate that our method successively recovers, at increasingly compressed "resolutions", nested but increasingly perturbed equivariances, where new equivariances emerge at bifurcation points of the trade-off parameter. Our framework suggests a new path for the extraction of generalised probabilistic symmetries.

Multimodal intention understanding (MIU) is an indispensable component of human expression analysis (e.g., sentiment or humor) from heterogeneous modalities, including visual postures, linguistic contents, and acoustic behaviors. Existing works invariably focus on designing sophisticated structures or fusion strategies to achieve impressive improvements. Unfortunately, they all suffer from the subject variation problem due to data distribution discrepancies among subjects. Concretely, MIU models are easily misled by distinct subjects with different expression customs and characteristics in the training data to learn subject-specific spurious correlations, significantly limiting performance and generalizability across uninitiated subjects.Motivated by this observation, we introduce a recapitulative causal graph to formulate the MIU procedure and analyze the confounding effect of subjects. Then, we propose SuCI, a simple yet effective causal intervention module to disentangle the impact of subjects acting as unobserved confounders and achieve model training via true causal effects. As a plug-and-play component, SuCI can be widely applied to most methods that seek unbiased predictions. Comprehensive experiments on several MIU benchmarks clearly demonstrate the effectiveness of the proposed module.

Every language recognized by a non-deterministic finite automaton can be recognized by a deterministic automaton, at the cost of a potential increase of the number of states, which in the worst case can go from $n$ states to $2^n$ states. In this article, we investigate this classical result in a probabilistic setting where we take a deterministic automaton with $n$ states uniformly at random and add just one random transition. These automata are almost deterministic in the sense that only one state has a non-deterministic choice when reading an input letter. In our model, each state has a fixed probability to be final. We prove that for any $d\geq 1$, with non-negligible probability the minimal (deterministic) automaton of the language recognized by such an automaton has more than $n^d$ states; as a byproduct, the expected size of its minimal automaton grows faster than any polynomial. Our result also holds when each state is final with some probability that depends on $n$, as long as it is not too close to $0$ and $1$, at distance at least $\Omega(\frac1{\sqrt{n}})$ to be precise, therefore allowing models with a sublinear number of final states in expectation.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司