Real-world image de-weathering aims at removing various undesirable weather-related artifacts. Owing to the impossibility of capturing image pairs concurrently, existing real-world de-weathering datasets often exhibit inconsistent illumination, position, and textures between the ground-truth images and the input degraded images, resulting in imperfect supervision. Such non-ideal supervision negatively affects the training process of learning-based de-weathering methods. In this work, we attempt to address the problem with a unified solution for various inconsistencies. Specifically, inspired by information bottleneck theory, we first develop a Consistent Label Constructor (CLC) to generate a pseudo-label as consistent as possible with the input degraded image while removing most weather-related degradations. In particular, multiple adjacent frames of the current input are also fed into CLC to enhance the pseudo-label. Then we combine the original imperfect labels and pseudo-labels to jointly supervise the de-weathering model by the proposed Information Allocation Strategy (IAS). During testing, only the de-weathering model is used for inference. Experiments on two real-world de-weathering datasets show that our method helps existing de-weathering models achieve better performance. Codes are available at //github.com/1180300419/imperfect-deweathering.
Real-world scenarios are usually accompanied by continuously appearing classes with scare labeled samples, which require the machine learning model to incrementally learn new classes and maintain the knowledge of base classes. In this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods either introduce extra learnable components or rely on a frozen feature extractor to mitigate catastrophic forgetting and overfitting problems. However, we find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes. In other words, the strong discriminability of base classes distracts the classification of new classes. To figure out this intriguing phenomenon, we observe that although the feature extractor is only trained on base classes, it can surprisingly represent the semantic similarity between the base and unseen new classes. Building upon these analyses, we propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes by fusing the new prototypes (i.e., mean features of a class) with weighted base prototypes. In addition to standard benchmarks in FSCIL, TEEN demonstrates remarkable performance and consistent improvements over baseline methods in the few-shot learning scenario. Code is available at: //github.com/wangkiw/TEEN
Learning-based point cloud registration approaches have significantly outperformed their traditional counterparts. However, they typically require extensive training on specific datasets. In this paper, we propose , the first zero-shot point cloud registration approach that eliminates the need for training on point cloud datasets. The cornerstone of ZeroReg is the novel transfer of image features from keypoints to the point cloud, enriched by aggregating information from 3D geometric neighborhoods. Specifically, we extract keypoints and features from 2D image pairs using a frozen pretrained 2D backbone. These features are then projected in 3D, and patches are constructed by searching for neighboring points. We integrate the geometric and visual features of each point using our novel parameter-free geometric decoder. Subsequently, the task of determining correspondences between point clouds is formulated as an optimal transport problem. Extensive evaluations of ZeroReg demonstrate its competitive performance against both traditional and learning-based methods. On benchmarks such as 3DMatch, 3DLoMatch, and ScanNet, ZeroReg achieves impressive Recall Ratios (RR) of over 84%, 46%, and 75%, respectively.
Adverse weather image restoration strives to recover clear images from those affected by various weather types, such as rain, haze, and snow. Each weather type calls for a tailored degradation removal approach due to its unique impact on images. Conversely, content reconstruction can employ a uniform approach, as the underlying image content remains consistent. Although previous techniques can handle multiple weather types within a single network, they neglect the crucial distinction between these two processes, limiting the quality of restored images. This work introduces a novel adverse weather image restoration method, called DDCNet, which decouples the degradation removal and content reconstruction process at the feature level based on their channel statistics. Specifically, we exploit the unique advantages of the Fourier transform in both these two processes: (1) the degradation information is mainly located in the amplitude component of the Fourier domain, and (2) the Fourier domain contains global information. The former facilitates channel-dependent degradation removal operation, allowing the network to tailor responses to various adverse weather types; the latter, by integrating Fourier's global properties into channel-independent content features, enhances network capacity for consistent global content reconstruction. We further augment the degradation removal process with a degradation mapping loss function. Extensive experiments demonstrate our method achieves state-of-the-art performance in multiple adverse weather removal benchmarks.
In an increasingly interconnected and data-driven world, the importance of robust security measures cannot be overstated. A knowledge graph constructed with information extracted from the system along with the desired security behavior can be utilized to identify complex security vulnerabilities hidden underneath the systems. Unfortunately, existing security knowledge graphs are constructed from coarse-grained information extracted from publicly available vulnerability reports, which are not equipped to check actual security violations in real-world system implementations. In this poster, we present a novel approach of using Program Knowledge Graph that is embedded with fine-grained execution information of the systems (e.g., callgraph, data-flow, etc.) along with information extracted from the public vulnerability and weakness datasets (e.g., CVE and CWE). We further demonstrate that our custom security knowledge graph can be checked against the standard queries generated by LLM, providing a powerful way to identify security vulnerabilities and weaknesses in critical systems.
Learning from Text-Attributed Graphs (TAGs) has attracted significant attention due to its wide range of real-world applications. The rapid evolution of large language models (LLMs) has revolutionized the way we process textual data, which indicates a strong potential to replace shallow text embedding generally used in Graph Neural Networks (GNNs). However, we find that existing LLM approaches that exploit text information in graphs suffer from inferior computation and data efficiency. In this work, we introduce a novel and efficient approach for the end-to-end fine-tuning of Large Language Models (LLMs) on TAGs, named LEADING. The proposed approach maintains computation cost and memory overhead comparable to the graph-less fine-tuning of LLMs. Moreover, it transfers the rick knowledge in LLMs to downstream graph learning tasks effectively with limited labeled data in semi-supervised learning. Its superior computation and data efficiency are demonstrated through comprehensive experiments, offering a promising solution for a wide range of LLMs and graph learning tasks on TAGs.
Relative survival represents the preferred framework for the analysis of population cancer survival data. The aim is to model the survival probability associated to cancer in the absence of information about the cause of death. Recent data linkage developments have allowed for incorporating the place of residence into the population cancer data bases; however, modeling this spatial information has received little attention in the relative survival setting. We propose a flexible parametric class of spatial excess hazard models (along with inference tools), named "Relative Survival Spatial General Hazard" (RS-SGH), that allows for the inclusion of fixed and spatial effects in both time-level and hazard-level components. We illustrate the performance of the proposed model using an extensive simulation study, and provide guidelines about the interplay of sample size, censoring, and model misspecification. We present a case study using real data from colon cancer patients in England. This case study illustrates how a spatial model can be used to identify geographical areas with low cancer survival, as well as how to summarize such a model through marginal survival quantities and spatial effects.
The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.
Text in natural images is of arbitrary orientations, requiring detection in terms of oriented bounding boxes. Normally, a multi-oriented text detector often involves two key tasks: 1) text presence detection, which is a classification problem disregarding text orientation; 2) oriented bounding box regression, which concerns about text orientation. Previous methods rely on shared features for both tasks, resulting in degraded performance due to the incompatibility of the two tasks. To address this issue, we propose to perform classification and regression on features of different characteristics, extracted by two network branches of different designs. Concretely, the regression branch extracts rotation-sensitive features by actively rotating the convolutional filters, while the classification branch extracts rotation-invariant features by pooling the rotation-sensitive features. The proposed method named Rotation-sensitive Regression Detector (RRD) achieves state-of-the-art performance on three oriented scene text benchmark datasets, including ICDAR 2015, MSRA-TD500, RCTW-17 and COCO-Text. Furthermore, RRD achieves a significant improvement on a ship collection dataset, demonstrating its generality on oriented object detection.