We introduce AMAGO, an in-context Reinforcement Learning (RL) agent that uses sequence models to tackle the challenges of generalization, long-term memory, and meta-learning. Recent works have shown that off-policy learning can make in-context RL with recurrent policies viable. Nonetheless, these approaches require extensive tuning and limit scalability by creating key bottlenecks in agents' memory capacity, planning horizon, and model size. AMAGO revisits and redesigns the off-policy in-context approach to successfully train long-sequence Transformers over entire rollouts in parallel with end-to-end RL. Our agent is uniquely scalable and applicable to a wide range of problems. We demonstrate its strong performance empirically in meta-RL and long-term memory domains. AMAGO's focus on sparse rewards and off-policy data also allows in-context learning to extend to goal-conditioned problems with challenging exploration. When combined with a novel hindsight relabeling scheme, AMAGO can solve a previously difficult category of open-world domains, where agents complete many possible instructions in procedurally generated environments. We evaluate our agent on three goal-conditioned domains and study how its individual improvements connect to create a generalist policy.
Despite the advancement in computational modeling towards brain tumor segmentation, of which several models have been developed, it is evident from the computational complexity of existing models which are still at an all-time high, that performance and efficiency under clinical application scenarios are limited. Therefore, this paper proposes a shallow encoder and decoder network named SEDNet for brain tumor segmentation. The proposed network is adapted from the U-Net structure. Though brain tumors do not assume complex structures like the task the traditional U-Net was designed for, their variance in appearance, shape, and ambiguity of boundaries makes it a compelling complex task to solve. SEDNet architecture design is inspired by the localized nature of brain tumors in brain images, thus consists of sufficient hierarchical convolutional blocks in the encoding pathway capable of learning the intrinsic features of brain tumors in brain slices, and a decoding pathway with selective skip path sufficient for capturing miniature local-level spatial features alongside the global-level features of brain tumor. SEDNet with the integration of the proposed preprocessing algorithm and optimization function on the BraTS2020 set reserved for testing achieves impressive dice and Hausdorff scores of 0.9308, 0.9451, 0.9026, and 0.7040, 1.2866, 0.7762 for non-enhancing tumor core (NTC), peritumoral edema (ED), and enhancing tumor (ET), respectively. Furthermore, through transfer learning with initialized SEDNet pre-trained weights, termed SEDNetX, a performance increase is observed. The dice and Hausdorff scores recorded are 0.9336, 0.9478, 0.9061, 0.6983, 1.2691, and 0.7711 for NTC, ED, and ET, respectively. With about 1.3 million parameters and impressive performance in comparison to the state-of-the-art, SEDNet(X) is shown to be computationally efficient for real-time clinical diagnosis.
Current speech large language models build upon discrete speech representations, which can be categorized into semantic tokens and acoustic tokens. However, existing speech tokens are not specifically designed for speech language modeling. To assess the suitability of speech tokens for building speech language models, we established the first benchmark, SLMTokBench. Our results indicate that neither semantic nor acoustic tokens are ideal for this purpose. Therefore, we propose SpeechTokenizer, a unified speech tokenizer for speech large language models. SpeechTokenizer adopts the Encoder-Decoder architecture with residual vector quantization (RVQ). Unifying semantic and acoustic tokens, SpeechTokenizer disentangles different aspects of speech information hierarchically across different RVQ layers. Furthermore, We construct a Unified Speech Language Model (USLM) leveraging SpeechTokenizer. Experiments show that SpeechTokenizer performs comparably to EnCodec in speech reconstruction and demonstrates strong performance on the SLMTokBench benchmark. Also, USLM outperforms VALL-E in zero-shot Text-to-Speech tasks. Code and models are available at //github.com/ZhangXInFD/SpeechTokenizer/.
We propose Diffusion Inference-Time T-Optimization (DITTO), a general-purpose frame-work for controlling pre-trained text-to-music diffusion models at inference-time via optimizing initial noise latents. Our method can be used to optimize through any differentiable feature matching loss to achieve a target (stylized) output and leverages gradient checkpointing for memory efficiency. We demonstrate a surprisingly wide-range of applications for music generation including inpainting, outpainting, and looping as well as intensity, melody, and musical structure control - all without ever fine-tuning the underlying model. When we compare our approach against related training, guidance, and optimization-based methods, we find DITTO achieves state-of-the-art performance on nearly all tasks, including outperforming comparable approaches on controllability, audio quality, and computational efficiency, thus opening the door for high-quality, flexible, training-free control of diffusion models. Sound examples can be found at //DITTO-Music.github.io/web/.
Weakly-Supervised Semantic Segmentation (WSSS) aims to train segmentation models using training image data with only image-level supervision. Since precise pixel-level annotations are not accessible, existing methods typically focus on producing pseudo masks for training segmentation models by refining CAM-like heatmaps. However, the produced heatmaps may only capture discriminative image regions of target object categories or the associated co-occurring backgrounds. To address the issues, we propose a Semantic Prompt Learning for WSSS (SemPLeS) framework, which learns to effectively prompt the CLIP space to enhance the semantic alignment between the segmented regions and the target object categories. More specifically, we propose Contrastive Prompt Learning and Class-associated Semantic Refinement to learn the prompts that adequately describe and suppress the image backgrounds associated with each target object category. In this way, our proposed framework is able to perform better semantic matching between object regions and the associated text labels, resulting in desired pseudo masks for training the segmentation model. The proposed SemPLeS framework achieves SOTA performance on the standard WSSS benchmarks, PASCAL VOC and MS COCO, and demonstrated interpretability with the semantic visualization of our learned prompts. The codes will be released.
Large language models (LLMs) are shown to benefit from chain-of-thought (COT) prompting, particularly when tackling tasks that require systematic reasoning processes. On the other hand, COT prompting also poses new vulnerabilities in the form of backdoor attacks, wherein the model will output unintended malicious content under specific backdoor-triggered conditions during inference. Traditional methods for launching backdoor attacks involve either contaminating the training dataset with backdoored instances or directly manipulating the model parameters during deployment. However, these approaches are not practical for commercial LLMs that typically operate via API access. In this paper, we propose BadChain, the first backdoor attack against LLMs employing COT prompting, which does not require access to the training dataset or model parameters and imposes low computational overhead. BadChain leverages the inherent reasoning capabilities of LLMs by inserting a backdoor reasoning step into the sequence of reasoning steps of the model output, thereby altering the final response when a backdoor trigger exists in the query prompt. Empirically, we show the effectiveness of BadChain for two COT strategies across four LLMs (Llama2, GPT-3.5, PaLM2, and GPT-4) and six complex benchmark tasks encompassing arithmetic, commonsense, and symbolic reasoning. Moreover, we show that LLMs endowed with stronger reasoning capabilities exhibit higher susceptibility to BadChain, exemplified by a high average attack success rate of 97.0% across the six benchmark tasks on GPT-4. Finally, we propose two defenses based on shuffling and demonstrate their overall ineffectiveness against BadChain. Therefore, BadChain remains a severe threat to LLMs, underscoring the urgency for the development of robust and effective future defenses.
Large language models have gained immense importance in recent years and have demonstrated outstanding results in solving various tasks. However, despite these achievements, many questions remain unanswered in the context of large language models. Besides the optimal use of the models for inference and the alignment of the results to the desired specifications, the transfer of models to other languages is still an underdeveloped area of research. The recent publication of models such as Llama-2 and Zephyr has provided new insights into architectural improvements and the use of human feedback. However, insights into adapting these techniques to other languages remain scarce. In this paper, we build on latest improvements and apply the Direct Preference Optimization(DPO) approach to the German language. The model is available at //huggingface.co/DRXD1000/Phoenix.
Low-rank compression, a popular model compression technique that produces compact convolutional neural networks (CNNs) with low rankness, has been well-studied in the literature. On the other hand, low-rank training, as an alternative way to train low-rank CNNs from scratch, has been exploited little yet. Unlike low-rank compression, low-rank training does not need pre-trained full-rank models, and the entire training phase is always performed on the low-rank structure, bringing attractive benefits for practical applications. However, the existing low-rank training solutions still face several challenges, such as a considerable accuracy drop and/or still needing to update full-size models during the training. In this paper, we perform a systematic investigation on low-rank CNN training. By identifying the proper low-rank format and performance-improving strategy, we propose ELRT, an efficient low-rank training solution for high-accuracy, high-compactness, low-rank CNN models. Our extensive evaluation results for training various CNNs on different datasets demonstrate the effectiveness of ELRT.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.