Large language models (LLMs) are proficient at generating fluent text with minimal task-specific supervision. Yet, their ability to provide well-grounded rationalizations for knowledge-intensive tasks remains under-explored. Such tasks, like commonsense multiple-choice questions, require rationales based on world knowledge to support predictions and refute alternate options. We consider the task of generating knowledge-guided rationalization in natural language by using expert-written examples in a few-shot manner. Surprisingly, crowd-workers preferred knowledge-grounded rationales over crowdsourced rationalizations, citing their factuality, sufficiency, and comprehensive refutations. Although LLMs-generated rationales were preferable, further improvements in conciseness and novelty are required. In another study, we show how rationalization of incorrect model predictions erodes humans' trust in LLM-generated rationales. Motivated by these observations, we create a two-stage pipeline to review task predictions and eliminate potential incorrect decisions before rationalization, enabling trustworthy rationale generation.
Despite the great success of large language models (LLMs) in various tasks, they suffer from generating hallucinations. We introduce Truth Forest, a method that enhances truthfulness in LLMs by uncovering hidden truth representations using multi-dimensional orthogonal probes. Specifically, it creates multiple orthogonal bases for modeling truth by incorporating orthogonal constraints into the probes. Moreover, we introduce Random Peek, a systematic technique considering an extended range of positions within the sequence, reducing the gap between discerning and generating truth features in LLMs. By employing this approach, we improved the truthfulness of Llama-2-7B from 40.8\% to 74.5\% on TruthfulQA. Likewise, significant improvements are observed in fine-tuned models. We conducted a thorough analysis of truth features using probes. Our visualization results show that orthogonal probes capture complementary truth-related features, forming well-defined clusters that reveal the inherent structure of the dataset. Code: \url{//github.com/jongjyh/trfr}
Large language models (LLMs) have shown remarkable generalization capability with exceptional performance in various language modeling tasks. However, they still exhibit inherent limitations in precisely capturing and returning grounded knowledge. While existing work has explored utilizing knowledge graphs (KGs) to enhance language modeling via joint training and customized model architectures, applying this to LLMs is problematic owing to their large number of parameters and high computational cost. Therefore, how to enhance pre-trained LLMs using grounded knowledge, e.g., retrieval-augmented generation, remains an open question. In this work, we propose Graph Neural Prompting (GNP), a novel plug-and-play method to assist pre-trained LLMs in learning beneficial knowledge from KGs. GNP encompasses various designs, including a standard graph neural network encoder, a cross-modality pooling module, a domain projector, and a self-supervised link prediction objective. Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks across different LLM sizes and settings. Code is available at //github.com/meettyj/GNP.
Recent advancements in large language models (LLMs) have brought significant changes to various dimains, especially through LLM-driven autonomous agents. These agents are now capable of collaborating seamlessly, splitting tasks and enhancing accuracy, thus minimizing the need for human involvement. However, these agents often approach a diverse range of tasks in isolation, without benefiting from past experiences. This isolation can lead to repeated mistakes and inefficient trials in task solving. To this end, this paper introduces Experiential Co-Learning, a novel framework in which instructor and assistant agents gather shortcut-oriented experiences from their historical trajectories and use these past experiences for mutual reasoning. This paradigm, enriched with previous experiences, equips agents to more effectively address unseen tasks.
We propose StyleCap, a method to generate natural language descriptions of speaking styles appearing in speech. Although most of conventional techniques for para-/non-linguistic information recognition focus on the category classification or the intensity estimation of pre-defined labels, they cannot provide the reasoning of the recognition result in an interpretable manner. StyleCap is a first step towards an end-to-end method for generating speaking-style prompts from speech, i.e., automatic speaking-style captioning. StyleCap is trained with paired data of speech and natural language descriptions. We train neural networks that convert a speech representation vector into prefix vectors that are fed into a large language model (LLM)-based text decoder. We explore an appropriate text decoder and speech feature representation suitable for this new task. The experimental results demonstrate that our StyleCap leveraging richer LLMs for the text decoder, speech self-supervised learning (SSL) features, and sentence rephrasing augmentation improves the accuracy and diversity of generated speaking-style captions. Samples of speaking-style captions generated by our StyleCap are publicly available.
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Pre-trained language models (PLMs) have been the de facto paradigm for most natural language processing (NLP) tasks. This also benefits biomedical domain: researchers from informatics, medicine, and computer science (CS) communities propose various PLMs trained on biomedical datasets, e.g., biomedical text, electronic health records, protein, and DNA sequences for various biomedical tasks. However, the cross-discipline characteristics of biomedical PLMs hinder their spreading among communities; some existing works are isolated from each other without comprehensive comparison and discussions. It expects a survey that not only systematically reviews recent advances of biomedical PLMs and their applications but also standardizes terminology and benchmarks. In this paper, we summarize the recent progress of pre-trained language models in the biomedical domain and their applications in biomedical downstream tasks. Particularly, we discuss the motivations and propose a taxonomy of existing biomedical PLMs. Their applications in biomedical downstream tasks are exhaustively discussed. At last, we illustrate various limitations and future trends, which we hope can provide inspiration for the future research of the research community.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.