亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Convolutional neural networks (CNN) define the state-of-the-art solution on many perceptual tasks. However, current CNN approaches largely remain vulnerable against adversarial perturbations of the input that have been crafted specifically to fool the system while being quasi-imperceptible to the human eye. In recent years, various approaches have been proposed to defend CNNs against such attacks, for example by model hardening or by adding explicit defence mechanisms. Thereby, a small "detector" is included in the network and trained on the binary classification task of distinguishing genuine data from data containing adversarial perturbations. In this work, we propose a simple and light-weight detector, which leverages recent findings on the relation between networks' local intrinsic dimensionality (LID) and adversarial attacks. Based on a re-interpretation of the LID measure and several simple adaptations, we surpass the state-of-the-art on adversarial detection by a significant margin and reach almost perfect results in terms of F1-score for several networks and datasets. Sources available at: //github.com/adverML/multiLID

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Deep neural network based object detectors are continuously evolving and are used in a multitude of applications, each having its own set of requirements. While safety-critical applications need high accuracy and reliability, low-latency tasks need resource and energy-efficient networks. Real-time detectors, which are a necessity in high-impact real-world applications, are continuously proposed, but they overemphasize the improvements in accuracy and speed while other capabilities such as versatility, robustness, resource and energy efficiency are omitted. A reference benchmark for existing networks does not exist, nor does a standard evaluation guideline for designing new networks, which results in ambiguous and inconsistent comparisons. We, thus, conduct a comprehensive study on multiple real-time detectors (anchor-, keypoint-, and transformer-based) on a wide range of datasets and report results on an extensive set of metrics. We also study the impact of variables such as image size, anchor dimensions, confidence thresholds, and architecture layers on the overall performance. We analyze the robustness of detection networks against distribution shifts, natural corruptions, and adversarial attacks. Also, we provide a calibration analysis to gauge the reliability of the predictions. Finally, to highlight the real-world impact, we conduct two unique case studies, on autonomous driving and healthcare applications. To further gauge the capability of networks in critical real-time applications, we report the performance after deploying the detection networks on edge devices. Our extensive empirical study can act as a guideline for the industrial community to make an informed choice on the existing networks. We also hope to inspire the research community towards a new direction in the design and evaluation of networks that focuses on a bigger and holistic overview for a far-reaching impact.

State-of-the-art solvers for symmetry detection in combinatorial objects are becoming increasingly sophisticated software libraries. Most of the solvers were initially designed with inputs from combinatorics in mind (nauty, bliss, Traces, dejavu). They excel at dealing with a complicated core of the input. Others focus on practical instances that exhibit sparsity. They excel at dealing with comparatively easy but extremely large substructures of the input (saucy). In practice, these differences manifest in significantly diverging performances on different types of graph classes. We engineer a preprocessor for symmetry detection. The result is a tool designed to shrink sparse, large substructures of the input graph. On most of the practical instances, the overall running time improves significantly for many of the state-of-the-art solvers. At the same time, our benchmarks show that the additional overhead is negligible. Overall we obtain single algorithms with competitive performance across all benchmark graphs. As such the preprocessor bridges the disparity between solvers that focus on combinatorial graphs and large practical graphs. In fact, on most of the practical instances the combined setup significantly outperforms previous state-of-the-art.

In this study, a new Anomaly Detection (AD) approach for real-world images is proposed. This method leverages the theoretical strengths of unsupervised learning and the data availability of both normal and abnormal classes. The AD is often formulated as an unsupervised task motivated by the frequent imbalanced nature of the datasets, as well as the challenge of capturing the entirety of the abnormal class. Such methods only rely on normal images during training, which are devoted to be reconstructed through an autoencoder architecture for instance. However, the information contained in the abnormal data is also valuable for this reconstruction. Indeed, the model would be able to identify its weaknesses by better learning how to transform an abnormal (or normal) image into a normal (or abnormal) image. Each of these tasks could help the entire model to learn with higher precision than a single normal to normal reconstruction. To address this challenge, the proposed method utilizes Cycle-Generative Adversarial Networks (Cycle-GANs) for abnormal-to-normal translation. To the best of our knowledge, this is the first time that Cycle-GANs have been studied for this purpose. After an input image has been reconstructed by the normal generator, an anomaly score describes the differences between the input and reconstructed images. Based on a threshold set with a business quality constraint, the input image is then flagged as normal or not. The proposed method is evaluated on industrial and medical images, including cases with balanced datasets and others with as few as 30 abnormal images. The results demonstrate accurate performance and good generalization for all kinds of anomalies, specifically for texture-shaped images where the method reaches an average accuracy of 97.2% (85.4% with an additional zero false negative constraint).

Time series classification is an important problem in real world. Due to its non-stationary property that the distribution changes over time, it remains challenging to build models for generalization to unseen distributions. In this paper, we propose to view the time series classification problem from the distribution perspective. We argue that the temporal complexity attributes to the unknown latent distributions within. To this end, we propose DIVERSIFY to learn generalized representations for time series classification. DIVERSIFY takes an iterative process: it first obtains the worst-case distribution scenario via adversarial training, then matches the distributions of the obtained sub-domains. We also present some theoretical insights. We conduct experiments on gesture recognition, speech commands recognition, wearable stress and affect detection, and sensor-based human activity recognition with a total of seven datasets in different settings. Results demonstrate that DIVERSIFY significantly outperforms other baselines and effectively characterizes the latent distributions by qualitative and quantitative analysis. Code is available at: //github.com/microsoft/robustlearn.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.

There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

北京阿比特科技有限公司