The Shortest-Path Problem in Graph of Convex Sets (SPP in GCS) is a recently developed optimization framework that blends discrete and continuous decision making. Many relevant problems in robotics, such as collision-free motion planning, can be cast and solved as an SPP in GCS, yielding lower-cost solutions and faster runtimes than state-of-the-art algorithms. In this paper, we are motivated by motion planning of robot arms that must operate swiftly in static environments. We consider a multi-query extension of the SPP in GCS, where the goal is to efficiently precompute optimal paths between given sets of initial and target conditions. Our solution consists of two stages. Offline, we use semidefinite programming to compute a coarse lower bound on the problem's cost-to-go function. Then, online, this lower bound is used to incrementally generate feasible paths by solving short-horizon convex programs. For a robot arm with seven joints, our method designs higher quality trajectories up to two orders of magnitude faster than existing motion planners.
Evolutionary Multi-Objective Optimization Algorithms (EMOAs) are widely employed to tackle problems with multiple conflicting objectives. Recent research indicates that not all objectives are equally important to the decision-maker (DM). In the context of interactive EMOAs, preference information elicited from the DM during the optimization process can be leveraged to identify and discard irrelevant objectives, a crucial step when objective evaluations are computationally expensive. However, much of the existing literature fails to account for the dynamic nature of DM preferences, which can evolve throughout the decision-making process and affect the relevance of objectives. This study addresses this limitation by simulating dynamic shifts in DM preferences within a ranking-based interactive algorithm. Additionally, we propose methods to discard outdated or conflicting preferences when such shifts occur. Building on prior research, we also introduce a mechanism to safeguard relevant objectives that may become trapped in local or global optima due to the diminished correlation with the DM-provided rankings. Our experimental results demonstrate that the proposed methods effectively manage evolving preferences and significantly enhance the quality and desirability of the solutions produced by the algorithm.
We put forth Oblivious State Preparation (OSP) as a cryptographic primitive that unifies techniques developed in the context of a quantum server interacting with a classical client. OSP allows a classical polynomial-time sender to input a choice of one out of two public observables, and a quantum polynomial-time receiver to recover an eigenstate of the corresponding observable -- while keeping the sender's choice hidden from any malicious receiver. We obtain the following results: - The existence of (plain) trapdoor claw-free functions implies OSP, and the existence of dual-mode trapdoor claw-free functions implies round-optimal (two-round) OSP. - OSP implies the existence of proofs of quantumness, test of a qubit, blind classical delegation of quantum computation, and classical verification of quantum computation. - Two-round OSP implies quantum money with classical communication, classically-verifiable position verification, and (additionally assuming classical FHE with log-depth decryption) quantum FHE. Several of these applications were previously only known via tailored LWE-based constructions, whereas our OSP-based constructions yield new results from a wider variety of assumptions, including hard problems on cryptographic group actions. Finally, towards understanding the minimal hardness assumptions required to realize OSP, we prove the following: - OSP implies oblivious transfer between one classical and one quantum party. - Two-round OSP implies public-key encryption with classical keys and ciphertexts. In particular, these results help to ''explain'' the use of public-key cryptography in the known approaches to establishing a ''classical leash'' on a quantum server. For example, combined with a result of Austrin et al. (CRYPTO 22), we conclude that perfectly-correct OSP cannot exist unconditionally in the (quantum) random oracle model.
As Open Radio Access Networks (O-RAN) continue to expand, AI-driven applications (xApps) are increasingly being deployed enhance network management. However, developing xApps without formal verification risks introducing logical inconsistencies, particularly in balancing energy efficiency and service availability. In this paper, we argue that prior to their development, the formal analysis of xApp models should be a critical early step in the O-RAN design process. Using the PRISM model checker, we demonstrate how our results provide realistic insights into the thresholds between energy efficiency and service availability. While our models are simplified, the findings highlight how AI-informed decisions can enable more effective cell-switching policies. We position formal verification as an essential practice for future xApp development, avoiding fallacies in real-world applications and ensuring networks operate efficiently.
The rapid development of Multimodal Large Language Models (MLLMs) has expanded their capabilities from image comprehension to video understanding. However, most of these MLLMs focus primarily on offline video comprehension, necessitating extensive processing of all video frames before any queries can be made. This presents a significant gap compared to the human ability to watch, listen, think, and respond to streaming inputs in real time, highlighting the limitations of current MLLMs. In this paper, we introduce StreamingBench, the first comprehensive benchmark designed to evaluate the streaming video understanding capabilities of MLLMs. StreamingBench assesses three core aspects of streaming video understanding: (1) real-time visual understanding, (2) omni-source understanding, and (3) contextual understanding. The benchmark consists of 18 tasks, featuring 900 videos and 4,500 human-curated QA pairs. Each video features five questions presented at different time points to simulate a continuous streaming scenario. We conduct experiments on StreamingBench with 13 open-source and proprietary MLLMs and find that even the most advanced proprietary MLLMs like Gemini 1.5 Pro and GPT-4o perform significantly below human-level streaming video understanding capabilities. We hope our work can facilitate further advancements for MLLMs, empowering them to approach human-level video comprehension and interaction in more realistic scenarios.
Density Functional Theory (DFT) is used extensively in the computation of electronic properties of matter, with various applications. Approximating the exchange-correlation (XC) functional is the key to the Kohn-Sham DFT approach, the basis of most DFT calculations. The choice of this density functional approximation (DFA) depends crucially on the particular system under study, which has resulted in the development of hundreds of DFAs. Though the exact density functional is not known, researchers have discovered analytical properties of this exact functional. Furthermore, these exact conditions are used when designing DFAs. We present XCVerifier, the first approach for verifying whether a DFA implementation satisfies the DFT exact conditions. XCVerifier was evaluated on five DFAs from the popular Libxc library and seven exact conditions from recent work. XCVerifier was able to verify or find violations for a majority of the DFA/condition pairs, demonstrating the feasibility of using formal methods to verify DFA implementations.
Passive non-line-of-sight (NLOS) imaging has witnessed rapid development in recent years, due to its ability to image objects that are out of sight. The light transport condition plays an important role in this task since changing the conditions will lead to different imaging models. Existing learning-based NLOS methods usually train independent models for different light transport conditions, which is computationally inefficient and impairs the practicality of the models. In this work, we propose NLOS-LTM, a novel passive NLOS imaging method that effectively handles multiple light transport conditions with a single network. We achieve this by inferring a latent light transport representation from the projection image and using this representation to modulate the network that reconstructs the hidden image from the projection image. We train a light transport encoder together with a vector quantizer to obtain the light transport representation. To further regulate this representation, we jointly learn both the reconstruction network and the reprojection network during training. A set of light transport modulation blocks is used to modulate the two jointly trained networks in a multi-scale way. Extensive experiments on a large-scale passive NLOS dataset demonstrate the superiority of the proposed method. The code is available at //github.com/JerryOctopus/NLOS-LTM.
Large Language Models (LLMs) have demonstrated unparalleled effectiveness in various NLP tasks, and integrating LLMs with automatic speech recognition (ASR) is becoming a mainstream paradigm. Building upon this momentum, our research delves into an in-depth examination of this paradigm on a large open-source Chinese dataset. Specifically, our research aims to evaluate the impact of various configurations of speech encoders, LLMs, and projector modules in the context of the speech foundation encoder-LLM ASR paradigm. Furthermore, we introduce a three-stage training approach, expressly developed to enhance the model's ability to align auditory and textual information. The implementation of this approach, alongside the strategic integration of ASR components, enabled us to achieve the SOTA performance on the AISHELL-1, Test_Net, and Test_Meeting test sets. Our analysis presents an empirical foundation for future research in LLM-based ASR systems and offers insights into optimizing performance using Chinese datasets. We will publicly release all scripts used for data preparation, training, inference, and scoring, as well as pre-trained models and training logs to promote reproducible research.
Graph diffusion, which iteratively propagates real-valued substances among the graph, is used in numerous graph/network-involved applications. However, releasing diffusion vectors may reveal sensitive linking information in the data such as transaction information in financial network data. However, protecting the privacy of graph data is challenging due to its interconnected nature. This work proposes a novel graph diffusion framework with edge-level differential privacy guarantees by using noisy diffusion iterates. The algorithm injects Laplace noise per diffusion iteration and adopts a degree-based thresholding function to mitigate the high sensitivity induced by low-degree nodes. Our privacy loss analysis is based on Privacy Amplification by Iteration (PABI), which to our best knowledge, is the first effort that analyzes PABI with Laplace noise and provides relevant applications. We also introduce a novel Infinity-Wasserstein distance tracking method, which tightens the analysis of privacy leakage and makes PABI more applicable in practice. We evaluate this framework by applying it to Personalized Pagerank computation for ranking tasks. Experiments on real-world network data demonstrate the superiority of our method under stringent privacy conditions.
The Traveling Salesman Problem (TSP) in the two-dimensional Euclidean plane is among the oldest and most famous NP-hard optimization problems. In breakthrough works, Arora [J. ACM 1998] and Mitchell [SICOMP 1999] gave the first polynomial time approximation schemes. The running time of their approximation schemes was improved by Rao and Smith [STOC 1998] to $(1/\varepsilon)^{O(1/\varepsilon)} n \log n$. Bartal and Gottlieb [FOCS 2013] gave an approximation scheme of running time $2^{(1/\varepsilon)^{O(1)}} n$, which is optimal in $n$. Recently, Kisfaludi-Bak, Nederlof, and W\k{e}grzycki [FOCS 2021] gave a $2^{O(1/\varepsilon)} n \log n$ time approximation scheme, achieving the optimal running time in $\varepsilon$ under the Gap-ETH conjecture. In our work, we give a $2^{O(1/\varepsilon)} n$ time approximation scheme, achieving the optimal running time both in $n$ and in $\varepsilon$ under the Gap-ETH conjecture.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.