亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of learning one task with samples from another task has received much interest recently. In this paper, we ask a fundamental question: when is combining data from two tasks better than learning one task alone? Intuitively, the transfer effect from one task to another task depends on dataset shifts such as sample sizes and covariance matrices. However, quantifying such a transfer effect is challenging since we need to compare the risks between joint learning and single-task learning, and the comparative advantage of one over the other depends on the exact kind of dataset shift between both tasks. This paper uses random matrix theory to tackle this challenge in a linear regression setting with two tasks. We give precise asymptotics about the excess risks of some commonly used estimators in the high-dimensional regime, when the sample sizes increase proportionally with the feature dimension at fixed ratios. The precise asymptotics is provided as a function of the sample sizes and covariate/model shifts, which can be used to study transfer effects: In a random-effects model, we give conditions to determine positive and negative transfers between learning two tasks versus single-task learning; the conditions reveal intricate relations between dataset shifts and transfer effects. Simulations justify the validity of the asymptotics in finite dimensions. Our analysis examines several functions of two different sample covariance matrices, revealing some estimates that generalize classical results in the random matrix theory literature, which may be of independent interest.

相關內容

Deep reinforcement learning has the potential to address various scientific problems. In this paper, we implement an optics simulation environment for reinforcement learning based controllers. The environment captures the essence of nonconvexity, nonlinearity, and time-dependent noise inherent in optical systems, offering a more realistic setting. Subsequently, we provide the benchmark results of several reinforcement learning algorithms on the proposed simulation environment. The experimental findings demonstrate the superiority of off-policy reinforcement learning approaches over traditional control algorithms in navigating the intricacies of complex optical control environments. The code of the paper is available at //github.com/Walleclipse/Reinforcement-Learning-Pulse-Stacking.

In this paper, we present efficient quantum algorithms that are exponentially faster than classical algorithms for solving the quantum optimal control problem. This problem involves finding the control variable that maximizes a physical quantity at time $T$, where the system is governed by a time-dependent Schr\"odinger equation. This type of control problem also has an intricate relation with machine learning. Our algorithms are based on a time-dependent Hamiltonian simulation method and a fast gradient-estimation algorithm. We also provide a comprehensive error analysis to quantify the total error from various steps, such as the finite-dimensional representation of the control function, the discretization of the Schr\"odinger equation, the numerical quadrature, and optimization. Our quantum algorithms require fault-tolerant quantum computers.

Nested simulation concerns estimating functionals of a conditional expectation via simulation. In this paper, we propose a new method based on kernel ridge regression to exploit the smoothness of the conditional expectation as a function of the multidimensional conditioning variable. Asymptotic analysis shows that the proposed method can effectively alleviate the curse of dimensionality on the convergence rate as the simulation budget increases, provided that the conditional expectation is sufficiently smooth. The smoothness bridges the gap between the cubic root convergence rate (that is, the optimal rate for the standard nested simulation) and the square root convergence rate (that is, the canonical rate for the standard Monte Carlo simulation). We demonstrate the performance of the proposed method via numerical examples from portfolio risk management and input uncertainty quantification.

Acoustic howling suppression (AHS) is a critical challenge in audio communication systems. In this paper, we propose a novel approach that leverages the power of neural networks (NN) to enhance the performance of traditional Kalman filter algorithms for AHS. Specifically, our method involves the integration of NN modules into the Kalman filter, enabling refining reference signal, a key factor in effective adaptive filtering, and estimating covariance metrics for the filter which are crucial for adaptability in dynamic conditions, thereby obtaining improved AHS performance. As a result, the proposed method achieves improved AHS performance compared to both standalone NN and Kalman filter methods. Experimental evaluations validate the effectiveness of our approach.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司