A dictionary data structure maintains a set of at most $n$ keys from the universe $[U]$ under key insertions and deletions, such that given a query $x \in [U]$, it returns if $x$ is in the set. Some variants also store values associated to the keys such that given a query $x$, the value associated to $x$ is returned when $x$ is in the set. This fundamental data structure problem has been studied for six decades since the introduction of hash tables in 1953. A hash table occupies $O(n\log U)$ bits of space with constant time per operation in expectation. There has been a vast literature on improving its time and space usage. The state-of-the-art dictionary by Bender, Farach-Colton, Kuszmaul, Kuszmaul and Liu [BFCK+22] has space consumption close to the information-theoretic optimum, using a total of \[ \log\binom{U}{n}+O(n\log^{(k)} n) \] bits, while supporting all operations in $O(k)$ time, for any parameter $k \leq \log^* n$. The term $O(\log^{(k)} n) = O(\underbrace{\log\cdots\log}_k n)$ is referred to as the wasted bits per key. In this paper, we prove a matching cell-probe lower bound: For $U=n^{1+\Theta(1)}$, any dictionary with $O(\log^{(k)} n)$ wasted bits per key must have expected operational time $\Omega(k)$, in the cell-probe model with word-size $w=\Theta(\log U)$. Furthermore, if a dictionary stores values of $\Theta(\log U)$ bits, we show that regardless of the query time, it must have $\Omega(k)$ expected update time. It is worth noting that this is the first cell-probe lower bound on the trade-off between space and update time for general data structures.
Given some binary matrix $M$, suppose we are presented with the collection of its rows and columns in independent arbitrary orderings. From this information, are we able to recover the unique original orderings and matrix? We present an algorithm that identifies whether there is a unique ordering associated with a set of rows and columns, and outputs either the unique correct orderings for the rows and columns or the full collection of all valid orderings and valid matrices. We show that there is a constant $c > 0$ such that the algorithm terminates in $O(n^2)$ time with high probability and in expectation for random $n \times n$ binary matrices with i.i.d.\ Bernoulli $(p)$ entries $(m_{ij})_{ij=1}^n$ such that $\frac{c\log^2(n)}{n(\log\log(n))^2} \leq p \leq \frac{1}{2}$.
For some $\epsilon > 10^{-36}$ we give a randomized $3/2-\epsilon$ approximation algorithm for metric TSP.
Dynamic multi-objective optimisation (DMO) handles optimisation problems with multiple (often conflicting) objectives in varying environments. Such problems pose various challenges to evolutionary algorithms, which have popularly been used to solve complex optimisation problems, due to their dynamic nature and resource restrictions in changing environments. This paper proposes vector autoregressive evolution (VARE) consisting of vector autoregression (VAR) and environment-aware hypermutation to address environmental changes in DMO. VARE builds a VAR model that considers mutual relationship between decision variables to effectively predict the moving solutions in dynamic environments. Additionally, VARE introduces EAH to address the blindness of existing hypermutation strategies in increasing population diversity in dynamic scenarios where predictive approaches are unsuitable. A seamless integration of VAR and EAH in an environment-adaptive manner makes VARE effective to handle a wide range of dynamic environments and competitive with several popular DMO algorithms, as demonstrated in extensive experimental studies. Specially, the proposed algorithm is computationally 50 times faster than two widely-used algorithms (i.e., TrDMOEA and MOEA/D-SVR) while producing significantly better results.
We study the existence of finite characterisations for modal formulas. A finite characterisation of a modal formula $\varphi$ is a finite collection of positive and negative examples that distinguishes $\varphi$ from every other, non-equivalent modal formula, where an example is a finite pointed Kripke structure. This definition can be restricted to specific frame classes and to fragments of the modal language: a modal fragment $L$ admits finite characterisations with respect to a frame class $F$ if every formula $\varphi\in L$ has a finite characterisation with respect to $L$ consting of examples that are based on frames in $F$. Finite characterisations are useful for illustration, interactive specification, and debugging of formal specifications, and their existence is a precondition for exact learnability with membership queries. We show that the full modal language admits finite characterisations with respect to a frame class $F$ only when the modal logic of $F$ is locally tabular. We then study which modal fragments, freely generated by some set of connectives, admit finite characterisations. Our main result is that the positive modal language without the truth-constants $\top$ and $\bot$ admits finite characterisations w.r.t. the class of all frames. This result is essentially optimal: finite characterizability fails when the language is extended with the truth constant $\top$ or $\bot$ or with all but very limited forms of negation.
We propose a general method for optimally approximating an arbitrary matrix $\mathbf{M}$ by a structured matrix $\mathbf{T}$ (circulant, Toeplitz/Hankel, etc.) and examine its use for estimating the spectra of genomic linkage disequilibrium matrices. This application is prototypical of a variety of genomic and proteomic problems that demand robustness to incomplete biosequence information. We perform a simulation study and corroborative test of our method using real genomic data from the Mouse Genome Database. The results confirm the predicted utility of the method and provide strong evidence of its potential value to a wide range of bioinformatics applications. Our optimal general matrix approximation method is expected to be of independent interest to an even broader range of applications in applied mathematics and engineering.
A minimal perfect hash function (MPHF) maps a set of n keys to the first n integers without collisions. Representing this bijection needs at least $\log_2(e) \approx 1.443$ bits per key, and there is a wide range of practical implementations achieving about 2 bits per key. Minimal perfect hashing is a key ingredient in many compact data structures such as updatable retrieval data structures and approximate membership data structures. A simple implementation reaching the space lower bound is to sample random hash functions using brute-force, which needs about $e^n \approx 2.718^n$ tries in expectation. ShockHash recently reduced that to about $(e/2)^n \approx 1.359^n$ tries in expectation by sampling random graphs. With bipartite ShockHash, we now sample random bipartite graphs. In this paper, we describe the general algorithmic ideas of bipartite ShockHash and give an experimental evaluation. The key insight is that we can try all combinations of two hash functions, each mapping into one half of the output range. This reduces the number of sampled hash functions to only about $(\sqrt{e/2})^n \approx 1.166^n$ in expectation. In itself, this does not reduce the asymptotic running time much because all combinations still need to be tested. However, by filtering the candidates before combining them, we can reduce this to less than $1.175^n$ combinations in expectation. Our implementation of bipartite ShockHash is up to 3 orders of magnitude faster than original ShockHash. Inside the RecSplit framework, bipartite ShockHash-RS enables significantly larger base cases, leading to a construction that is, depending on the allotted space budget, up to 20 times faster. In our most extreme configuration, ShockHash-RS can build an MPHF for 10 million keys with 1.489 bits per key (within 3.3% of the lower bound) in about half an hour, pushing the limits of what is possible.
We study the classic Text-to-Pattern Hamming Distances problem: given a pattern $P$ of length $m$ and a text $T$ of length $n$, both over a polynomial-size alphabet, compute the Hamming distance between $P$ and $T[i\, .\, . \, i+m-1]$ for every shift $i$, under the standard Word-RAM model with $\Theta(\log n)$-bit words. - We provide an $O(n\sqrt{m})$ time Las Vegas randomized algorithm for this problem, beating the decades-old $O(n \sqrt{m \log m})$ running time [Abrahamson, SICOMP 1987]. We also obtain a deterministic algorithm, with a slightly higher $O(n\sqrt{m}(\log m\log\log m)^{1/4})$ running time. Our randomized algorithm extends to the $k$-bounded setting, with running time $O\big(n+\frac{nk}{\sqrt{m}}\big)$, removing all the extra logarithmic factors from earlier algorithms [Gawrychowski and Uzna\'{n}ski, ICALP 2018; Chan, Golan, Kociumaka, Kopelowitz and Porat, STOC 2020]. - For the $(1+\epsilon)$-approximate version of Text-to-Pattern Hamming Distances, we give an $\tilde{O}(\epsilon^{-0.93}n)$ time Monte Carlo randomized algorithm, beating the previous $\tilde{O}(\epsilon^{-1}n)$ running time [Kopelowitz and Porat, FOCS 2015; Kopelowitz and Porat, SOSA 2018]. Our approximation algorithm exploits a connection with $3$SUM, and uses a combination of Fredman's trick, equality matrix product, and random sampling; in particular, we obtain new results on approximate counting versions of $3$SUM and Exact Triangle, which may be of independent interest. Our exact algorithms use a novel combination of hashing, bit-packed FFT, and recursion; in particular, we obtain a faster algorithm for computing the sumset of two integer sets, in the regime when the universe size is close to quadratic in the number of elements. We also prove a fine-grained equivalence between the exact Text-to-Pattern Hamming Distances problem and a range-restricted, counting version of $3$SUM.
This paper provides norm-based generalization bounds for the Transformer architecture that do not depend on the input sequence length. We employ a covering number based approach to prove our bounds. We use three novel covering number bounds for the function class of bounded linear transformations to upper bound the Rademacher complexity of the Transformer. Furthermore, we show this generalization bound applies to the common Transformer training technique of masking and then predicting the masked word. We also run a simulated study on a sparse majority data set that empirically validates our theoretical findings.
Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.