亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Signal detection is one of the main challenges of data science. As it often happens in data analysis, the signal in the data may be corrupted by noise. There is a wide range of techniques aimed at extracting the relevant degrees of freedom from data. However, some problems remain difficult. It is notably the case of signal detection in almost continuous spectra when the signal-to-noise ratio is small enough. This paper follows a recent bibliographic line which tackles this issue with field-theoretical methods. Previous analysis focused on equilibrium Boltzmann distributions for some effective field representing the degrees of freedom of data. It was possible to establish a relation between signal detection and $\mathbb{Z}_2$-symmetry breaking. In this paper, we consider a stochastic field framework inspiring by the so-called "Model A", and show that the ability to reach or not an equilibrium state is correlated with the shape of the dataset. In particular, studying the renormalization group of the model, we show that the weak ergodicity prescription is always broken for signals small enough, when the data distribution is close to the Marchenko-Pastur (MP) law. This, in particular, enables the definition of a detection threshold in the regime where the signal-to-noise ratio is small enough.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · 損失函數(機器學習) · 核化 · 貝葉斯推斷 · 損失 ·
2023 年 11 月 27 日

Sequential neural posterior estimation (SNPE) techniques have been recently proposed for dealing with simulation-based models with intractable likelihoods. Unlike approximate Bayesian computation, SNPE techniques learn the posterior from sequential simulation using neural network-based conditional density estimators by minimizing a specific loss function. The SNPE method proposed by Lueckmann et al. (2017) used a calibration kernel to boost the sample weights around the observed data, resulting in a concentrated loss function. However, the use of calibration kernels may increase the variances of both the empirical loss and its gradient, making the training inefficient. To improve the stability of SNPE, this paper proposes to use an adaptive calibration kernel and several variance reduction techniques. The proposed method greatly speeds up the process of training, and provides a better approximation of the posterior than the original SNPE method and some existing competitors as confirmed by numerical experiments.

We study the long time behavior of an underdamped mean-field Langevin (MFL) equation, and provide a general convergence as well as an exponential convergence rate result under different conditions. The results on the MFL equation can be applied to study the convergence of the Hamiltonian gradient descent algorithm for the overparametrized optimization. We then provide a numerical example of the algorithm to train a generative adversarial networks (GAN).

A system of coupled oscillators on an arbitrary graph is locally driven by the tendency to mutual synchronization between nearby oscillators, but can and often exhibit nonlinear behavior on the whole graph. Understanding such nonlinear behavior has been a key challenge in predicting whether all oscillators in such a system will eventually synchronize. In this paper, we demonstrate that, surprisingly, such nonlinear behavior of coupled oscillators can be effectively linearized in certain latent dynamic spaces. The key insight is that there is a small number of `latent dynamics filters', each with a specific association with synchronizing and non-synchronizing dynamics on subgraphs so that any observed dynamics on subgraphs can be approximated by a suitable linear combination of such elementary dynamic patterns. Taking an ensemble of subgraph-level predictions provides an interpretable predictor for whether the system on the whole graph reaches global synchronization. We propose algorithms based on supervised matrix factorization to learn such latent dynamics filters. We demonstrate that our method performs competitively in synchronization prediction tasks against baselines and black-box classification algorithms, despite its simple and interpretable architecture.

We consider the problem of sequential change detection, where the goal is to design a scheme for detecting any changes in a parameter or functional $\theta$ of the data stream distribution that has small detection delay, but guarantees control on the frequency of false alarms in the absence of changes. In this paper, we describe a simple reduction from sequential change detection to sequential estimation using confidence sequences: we begin a new $(1-\alpha)$-confidence sequence at each time step, and proclaim a change when the intersection of all active confidence sequences becomes empty. We prove that the average run length is at least $1/\alpha$, resulting in a change detection scheme with minimal structural assumptions~(thus allowing for possibly dependent observations, and nonparametric distribution classes), but strong guarantees. Our approach bears an interesting parallel with the reduction from change detection to sequential testing of Lorden (1971) and the e-detector of Shin et al. (2022).

Neural operators have been explored as surrogate models for simulating physical systems to overcome the limitations of traditional partial differential equation (PDE) solvers. However, most existing operator learning methods assume that the data originate from a single physical mechanism, limiting their applicability and performance in more realistic scenarios. To this end, we propose Physical Invariant Attention Neural Operator (PIANO) to decipher and integrate the physical invariants (PI) for operator learning from the PDE series with various physical mechanisms. PIANO employs self-supervised learning to extract physical knowledge and attention mechanisms to integrate them into dynamic convolutional layers. Compared to existing techniques, PIANO can reduce the relative error by 13.6\%-82.2\% on PDE forecasting tasks across varying coefficients, forces, or boundary conditions. Additionally, varied downstream tasks reveal that the PI embeddings deciphered by PIANO align well with the underlying invariants in the PDE systems, verifying the physical significance of PIANO. The source code will be publicly available at: //github.com/optray/PIANO.

We address the problem of testing conditional mean and conditional variance for non-stationary data. We build e-values and p-values for four types of non-parametric composite hypotheses with specified mean and variance as well as other conditions on the shape of the data-generating distribution. These shape conditions include symmetry, unimodality, and their combination. Using the obtained e-values and p-values, we construct tests via e-processes, also known as testing by betting, as well as some tests based on combining p-values for comparison. Although we mainly focus on one-sided tests, the two-sided test for the mean is also studied. Simulation and empirical studies are conducted under a few settings, and they illustrate features of the methods based on e-processes.

Refinement calculus provides a structured framework for the progressive and modular development of programs, ensuring their correctness throughout the refinement process. This paper introduces a refinement calculus tailored for quantum programs. To this end, we first study the partial correctness of nondeterministic programs within a quantum while language featuring prescription statements. Orthogonal projectors, which are equivalent to subspaces of the state Hilbert space, are taken as assertions for quantum states. In addition to the denotational semantics where a nondeterministic program is associated with a set of trace-nonincreasing super-operators, we also present their semantics in transforming a postcondition to the weakest liberal postconditions and, conversely, transforming a precondition to the strongest postconditions. Subsequently, refinement rules are introduced based on these dual semantics, offering a systematic approach to the incremental development of quantum programs applicable in various contexts. To illustrate the practical application of the refinement calculus, we examine examples such as the implementation of a $Z$-rotation gate, the repetition code, and the quantum-to-quantum Bernoulli factory. Furthermore, we present Quire, a Python-based interactive prototype tool that provides practical support to programmers engaged in the stepwise development of correct quantum programs.

The main reason for query model's prominence in complexity theory and quantum computing is the presence of concrete lower bounding techniques: polynomial and adversary method. There have been considerable efforts to give lower bounds using these methods, and to compare/relate them with other measures based on the decision tree. We explore the value of these lower bounds on quantum query complexity and their relation with other decision tree based complexity measures for the class of symmetric functions, arguably one of the most natural and basic sets of Boolean functions. We show an explicit construction for the dual of the positive adversary method and also of the square root of private coin certificate game complexity for any total symmetric function. This shows that the two values can't be distinguished for any symmetric function. Additionally, we show that the recently introduced measure of spectral sensitivity gives the same value as both positive adversary and approximate degree for every total symmetric Boolean function. Further, we look at the quantum query complexity of Gap Majority, a partial symmetric function. It has gained importance recently in regard to understanding the composition of randomized query complexity. We characterize the quantum query complexity of Gap Majority and show a lower bound on noisy randomized query complexity (Ben-David and Blais, FOCS 2020) in terms of quantum query complexity. Finally, we study how large certificate complexity and block sensitivity can be as compared to sensitivity for symmetric functions (even up to constant factors). We show tight separations, i.e., give upper bounds on possible separations and construct functions achieving the same.

We address the communication overhead of distributed sparse matrix-(multiple)-vector multiplication in the context of large-scale eigensolvers, using filter diagonalization as an example. The basis of our study is a performance model which includes a communication metric that is computed directly from the matrix sparsity pattern without running any code. The performance model quantifies to which extent scalability and parallel efficiency are lost due to communication overhead. To restore scalability, we identify two orthogonal layers of parallelism in the filter diagonalization technique. In the horizontal layer the rows of the sparse matrix are distributed across individual processes. In the vertical layer bundles of multiple vectors are distributed across separate process groups. An analysis in terms of the communication metric predicts that scalability can be restored if, and only if, one implements the two orthogonal layers of parallelism via different distributed vector layouts. Our theoretical analysis is corroborated by benchmarks for application matrices from quantum and solid state physics, road networks, and nonlinear programming. We finally demonstrate the benefits of using orthogonal layers of parallelism with two exemplary application cases -- an exciton and a strongly correlated electron system -- which incur either small or large communication overhead.

Improving the resolution of fluorescence microscopy beyond the diffraction limit can be achievedby acquiring and processing multiple images of the sample under different illumination conditions.One of the simplest techniques, Random Illumination Microscopy (RIM), forms the super-resolvedimage from the variance of images obtained with random speckled illuminations. However, thevalidity of this process has not been fully theorized. In this work, we characterize mathematicallythe sample information contained in the variance of diffraction-limited speckled images as a functionof the statistical properties of the illuminations. We show that an unambiguous two-fold resolutiongain is obtained when the speckle correlation length coincides with the width of the observationpoint spread function. Last, we analyze the difference between the variance-based techniques usingrandom speckled illuminations (as in RIM) and those obtained using random fluorophore activation(as in Super-resolution Optical Fluctuation Imaging, SOFI).

北京阿比特科技有限公司