The g-formula can be used to estimate the treatment effect while accounting for confounding bias in observational studies. With regard to time-to-event endpoints, possibly subject to competing risks, the construction of valid pointwise confidence intervals and time-simultaneous confidence bands for the causal risk difference is complicated, however. A convenient solution is to approximate the asymptotic distribution of the corresponding stochastic process by means of resampling approaches. In this paper, we consider three different resampling methods, namely the classical nonparametric bootstrap, the influence function equipped with a resampling approach as well as a martingale-based bootstrap version. We set up a simulation study to compare the accuracy of the different techniques, which reveals that the wild bootstrap should in general be preferred if the sample size is moderate and sufficient data on the event of interest have been accrued. For illustration, the three resampling methods are applied to data on the long-term survival in patients with early-stage Hodgkin's disease.
The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.
We investigate the use of multilevel Monte Carlo (MLMC) methods for estimating the expectation of discretized random fields. Specifically, we consider a setting in which the input and output vectors of the numerical simulators have inconsistent dimensions across the multilevel hierarchy. This requires the introduction of grid transfer operators borrowed from multigrid methods. Starting from a simple 1D illustration, we demonstrate numerically that the resulting MLMC estimator deteriorates the estimation of high-frequency components of the discretized expectation field compared to a Monte Carlo (MC) estimator. By adapting mathematical tools initially developed for multigrid methods, we perform a theoretical spectral analysis of the MLMC estimator of the expectation of discretized random fields, in the specific case of linear, symmetric and circulant simulators. This analysis provides a spectral decomposition of the variance into contributions associated with each scale component of the discretized field. We then propose improved MLMC estimators using a filtering mechanism similar to the smoothing process of multigrid methods. The filtering operators improve the estimation of both the small- and large-scale components of the variance, resulting in a reduction of the total variance of the estimator. These improvements are quantified for the specific class of simulators considered in our spectral analysis. The resulting filtered MLMC (F-MLMC) estimator is applied to the problem of estimating the discretized variance field of a diffusion-based covariance operator, which amounts to estimating the expectation of a discretized random field. The numerical experiments support the conclusions of the theoretical analysis even with non-linear simulators, and demonstrate the improvements brought by the proposed F-MLMC estimator compared to both a crude MC and an unfiltered MLMC estimator.
This paper presents methods to study the causal effect of a binary treatment on a functional outcome with observational data. We define a Functional Average Treatment Effect and develop an outcome regression estimator. We show how to obtain valid inference on the FATE using simultaneous confidence bands, which cover the FATE with a given probability over the entire domain. Simulation experiments illustrate how the simultaneous confidence bands take the multiple comparison problem into account. Finally, we use the methods to infer the effect of early adult location on subsequent income development for one Swedish birth cohort.
It is well known that artificial neural networks initialized from independent and identically distributed priors converge to Gaussian processes in the limit of large number of neurons per hidden layer. In this work we prove an analogous result for Quantum Neural Networks (QNNs). Namely, we show that the outputs of certain models based on Haar random unitary or orthogonal deep QNNs converge to Gaussian processes in the limit of large Hilbert space dimension $d$. The derivation of this result is more nuanced than in the classical case due to the role played by the input states, the measurement observable, and the fact that the entries of unitary matrices are not independent. An important consequence of our analysis is that the ensuing Gaussian processes cannot be used to efficiently predict the outputs of the QNN via Bayesian statistics. Furthermore, our theorems imply that the concentration of measure phenomenon in Haar random QNNs is worse than previously thought, as we prove that expectation values and gradients concentrate as $\mathcal{O}\left(\frac{1}{e^d \sqrt{d}}\right)$. Finally, we discuss how our results improve our understanding of concentration in $t$-designs.
Model-based optimization (MBO) is increasingly applied to design problems in science and engineering. A common scenario involves using a fixed training set to train models, with the goal of designing new samples that outperform those present in the training data. A major challenge in this setting is distribution shift, where the distributions of training and design samples are different. While some shift is expected, as the goal is to create better designs, this change can negatively affect model accuracy and subsequently, design quality. Despite the widespread nature of this problem, addressing it demands deep domain knowledge and artful application. To tackle this issue, we propose a straightforward method for design practitioners that detects distribution shifts. This method trains a binary classifier using knowledge of the unlabeled design distribution to separate the training data from the design data. The classifier's logit scores are then used as a proxy measure of distribution shift. We validate our method in a real-world application by running offline MBO and evaluate the effect of distribution shift on design quality. We find that the intensity of the shift in the design distribution varies based on the number of steps taken by the optimization algorithm, and our simple approach can identify these shifts. This enables users to constrain their search to regions where the model's predictions are reliable, thereby increasing the quality of designs.
Numerous practical medical problems often involve data that possess a combination of both sparse and non-sparse structures. Traditional penalized regularizations techniques, primarily designed for promoting sparsity, are inadequate to capture the optimal solutions in such scenarios. To address these challenges, this paper introduces a novel algorithm named Non-sparse Iteration (NSI). The NSI algorithm allows for the existence of both sparse and non-sparse structures and estimates them simultaneously and accurately. We provide theoretical guarantees that the proposed algorithm converges to the oracle solution and achieves the optimal rate for the upper bound of the $l_2$-norm error. Through simulations and practical applications, NSI consistently exhibits superior statistical performance in terms of estimation accuracy, prediction efficacy, and variable selection compared to several existing methods. The proposed method is also applied to breast cancer data, revealing repeated selection of specific genes for in-depth analysis.
The optimization of open-loop shallow geothermal systems, which includes both design and operational aspects, is an important research area aimed at improving their efficiency and sustainability and the effective management of groundwater as a shallow geothermal resource. This paper investigates various approaches to address optimization problems arising from these research and implementation questions about GWHP systems. The identified optimization approaches are thoroughly analyzed based on criteria such as computational cost and applicability. Moreover, a novel classification scheme is introduced that categorizes the approaches according to the types of groundwater simulation model and the optimization algorithm used. Simulation models are divided into two types: numerical and simplified (analytical or data-driven) models, while optimization algorithms are divided into gradient-based and derivative-free algorithms. Finally, a comprehensive review of existing approaches in the literature is provided, highlighting their strengths and limitations and offering recommendations for both the use of existing approaches and the development of new, improved ones in this field.
Black-box variational inference performance is sometimes hindered by the use of gradient estimators with high variance. This variance comes from two sources of randomness: Data subsampling and Monte Carlo sampling. While existing control variates only address Monte Carlo noise, and incremental gradient methods typically only address data subsampling, we propose a new "joint" control variate that jointly reduces variance from both sources of noise. This significantly reduces gradient variance, leading to faster optimization in several applications.
Accelerated life-tests (ALTs) are applied for inferring lifetime characteristics of highly reliable products. In particular, step-stress ALTs increase the stress level at which units under test are subject at certain pre-fixed times, thus accelerating product wear and inducing its failure. In some cases, due to cost or product nature constraints, continuous monitoring of devices is infeasible but the units are inspected for failures at particular inspection time points. In such setups, the ALT response is interval-censored. Furthermore, when a test unit fails, there are often more than one fatal cause for the failure, known as competing risks. In this paper, we assume that all competing risks are independent and follow an exponential distribution with scale parameter depending on the stress level. Under this setup, we present a family of robust estimators based on the density power divergence, including the classical maximum likelihood estimator as a particular case. We derive asymptotic and robustness properties of the MDPDE, showing its consistency for large samples. Based on these MDPDEs, estimates of the lifetime characteristics of the product as well as estimates of cause-specific lifetime characteristics have been developed. Direct, transformed and bootstrap confidence intervals for the mean lifetime to failure, reliability at a mission time, and distribution quantiles are proposed, and their performance is empirically compared through simulations. Besides, the performance of the MDPDE family has been examined through an extensive numerical study and the methods of inference discussed here are illustrated with a real-data example regarding electronic devices.
Hesitant fuzzy sets are widely used in the instances of uncertainty and hesitation. The inclusion relationship is an important and foundational definition for sets. Hesitant fuzzy set, as a kind of set, needs explicit definition of inclusion relationship. Base on the hesitant fuzzy membership degree of discrete form, several kinds of inclusion relationships for hesitant fuzzy sets are proposed. And then some foundational propositions of hesitant fuzzy sets and the families of hesitant fuzzy sets are presented. Finally, some foundational propositions of hesitant fuzzy information systems with respect to parameter reductions are put forward, and an example and an algorithm are given to illustrate the processes of parameter reductions.