亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present Consistent Assignment of Views over Random Partitions (CARP), a self-supervised clustering method for representation learning of visual features. CARP learns prototypes in an end-to-end online fashion using gradient descent without additional non-differentiable modules to solve the cluster assignment problem. CARP optimizes a new pretext task based on random partitions of prototypes that regularizes the model and enforces consistency between views' assignments. Additionally, our method improves training stability and prevents collapsed solutions in joint-embedding training. Through an extensive evaluation, we demonstrate that CARP's representations are suitable for learning downstream tasks. We evaluate CARP's representations capabilities in 17 datasets across many standard protocols, including linear evaluation, few-shot classification, k-NN, k-means, image retrieval, and copy detection. We compare CARP performance to 11 existing self-supervised methods. We extensively ablate our method and demonstrate that our proposed random partition pretext task improves the quality of the learned representations by devising multiple random classification tasks. In transfer learning tasks, CARP achieves the best performance on average against many SSL methods trained for a longer time.

相關內容

The Image Captioning (IC) technique is widely used to describe images in natural language. Recently, some IC system testing methods have been proposed. However, these methods still rely on pre-annotated information and hence cannot really alleviate the oracle problem in testing. Besides, their method artificially manipulates objects, which may generate unreal images as test cases and thus lead to less meaningful testing results. Thirdly, existing methods have various requirements on the eligibility of source test cases, and hence cannot fully utilize the given images to perform testing. To tackle these issues, in this paper, we propose REIC to perform metamorphic testing for IC systems with some image-level reduction transformations like image cropping and stretching. Instead of relying on the pre-annotated information, REIC uses a localization method to align objects in the caption with corresponding objects in the image, and checks whether each object is correctly described or deleted in the caption after transformation. With the image-level reduction transformations, REIC does not artificially manipulate any objects and hence can avoid generating unreal follow-up images. Besides, it eliminates the requirement on the eligibility of source test cases in the metamorphic transformation process, as well as decreases the ambiguity and boosts the diversity among the follow-up test cases, which consequently enables testing to be performed on any test image and reveals more distinct valid violations. We employ REIC to test five popular IC systems. The results demonstrate that REIC can sufficiently leverage the provided test images to generate follow-up cases of good reality, and effectively detect a great number of distinct violations, without the need for any pre-annotated information.

We present Egocentric Action Scene Graphs (EASGs), a new representation for long-form understanding of egocentric videos. EASGs extend standard manually-annotated representations of egocentric videos, such as verb-noun action labels, by providing a temporally evolving graph-based description of the actions performed by the camera wearer, including interacted objects, their relationships, and how actions unfold in time. Through a novel annotation procedure, we extend the Ego4D dataset by adding manually labeled Egocentric Action Scene Graphs offering a rich set of annotations designed for long-from egocentric video understanding. We hence define the EASG generation task and provide a baseline approach, establishing preliminary benchmarks. Experiments on two downstream tasks, egocentric action anticipation and egocentric activity summarization, highlight the effectiveness of EASGs for long-form egocentric video understanding. We will release the dataset and the code to replicate experiments and annotations.

The following is a technical report to test the validity of the proposed Subspace Pyramid Fusion Module (SPFM) to capture multi-scale feature representations, which is more useful for semantic segmentation. In this investigation, we have proposed the Efficient Shuffle Attention Module(ESAM) to reconstruct the skip-connections paths by fusing multi-level global context features. Experimental results on two well-known semantic segmentation datasets, including Camvid and Cityscapes, show the effectiveness of our proposed method.

Molecular Property Prediction (MPP) task involves predicting biochemical properties based on molecular features, such as molecular graph structures, contributing to the discovery of lead compounds in drug development. To address data scarcity and imbalance in MPP, some studies have adopted Graph Neural Networks (GNN) as an encoder to extract commonalities from molecular graphs. However, these approaches often use a separate predictor for each task, neglecting the shared characteristics among predictors corresponding to different tasks. In response to this limitation, we introduce the GNN-MoCE architecture. It employs the Mixture of Collaborative Experts (MoCE) as predictors, exploiting task commonalities while confronting the homogeneity issue in the expert pool and the decision dominance dilemma within the expert group. To enhance expert diversity for collaboration among all experts, the Expert-Specific Projection method is proposed to assign a unique projection perspective to each expert. To balance decision-making influence for collaboration within the expert group, the Expert-Specific Loss is presented to integrate individual expert loss into the weighted decision loss of the group for more equitable training. Benefiting from the enhancements of MoCE in expert creation, dynamic expert group formation, and experts' collaboration, our model demonstrates superior performance over traditional methods on 24 MPP datasets, especially in tasks with limited data or high imbalance.

Inspired by the success of Large Language Models in dealing with new tasks via In-Context Learning (ICL) in NLP, researchers have also developed Large Vision-Language Models (LVLMs) with ICL capabilities. However, when implementing ICL using these LVLMs, researchers usually resort to the simplest way like random sampling to configure the in-context sequence, thus leading to sub-optimal results. To enhance the ICL performance, in this study, we use Visual Question Answering (VQA) as case study to explore diverse in-context configurations to find the powerful ones. Additionally, through observing the changes of the LVLM outputs by altering the in-context sequence, we gain insights into the inner properties of LVLMs, improving our understanding of them. Specifically, to explore in-context configurations, we design diverse retrieval methods and employ different strategies to manipulate the retrieved demonstrations. Through exhaustive experiments on three VQA datasets: VQAv2, VizWiz, and OK-VQA, we uncover three important inner properties of the applied LVLM and demonstrate which strategies can consistently improve the ICL VQA performance. Our code is provided in: //github.com/GaryJiajia/OFv2_ICL_VQA.

This study centers on Line-of-Sight (LoS) MIMO communication enabled by a Transmissive Reconfigurable Intelligent Surface (RIS) operating in the Terahertz (THz) frequency bands. The study demonstrates that the introduction of RIS can render the curvature of the wavefront apparent over the transmit and receive arrays, even when they are positioned in the far field from each other. This phenomenon contributes to an enhancement in spatial multiplexing. Notably, simulation results underline that the optimal placement of the RIS in the near-field is not solely contingent on proximity to the transmitter (Tx) or receiver (Rx) but relies on the inter-antenna spacing of the Tx and Rx.

Online Continual Learning (CL) solves the problem of learning the ever-emerging new classification tasks from a continuous data stream. Unlike its offline counterpart, in online CL, the training data can only be seen once. Most existing online CL research regards catastrophic forgetting (i.e., model stability) as almost the only challenge. In this paper, we argue that the model's capability to acquire new knowledge (i.e., model plasticity) is another challenge in online CL. While replay-based strategies have been shown to be effective in alleviating catastrophic forgetting, there is a notable gap in research attention toward improving model plasticity. To this end, we propose Collaborative Continual Learning (CCL), a collaborative learning based strategy to improve the model's capability in acquiring new concepts. Additionally, we introduce Distillation Chain (DC), a novel collaborative learning scheme to boost the training of the models. We adapted CCL-DC to existing representative online CL works. Extensive experiments demonstrate that even if the learners are well-trained with state-of-the-art online CL methods, our strategy can still improve model plasticity dramatically, and thereby improve the overall performance by a large margin.

In this work, we design and analyse a Slotted ALOHA (SA) solution for Optical Wireless Communication (OWC)-based Internet of Underwater Things (IoUT). In the proposed system, user devices exchange data with an access point (AP) which exploits the capture effect. The space spanned by the IoUT nodes is three-dimensional, i.e., users are located in half-sphere centered at the AP placed at the bottom of a floating object at the water surface level. The analytical expressions for the system throughput and reliability expressed in terms of the outage probability are derived. Based on the simulated signal-to-noise-and-interference-ratio statistics and derived analytical expressions, we present numerical results that investigate the trade-off between the system performance and the IoUT system parameters, such as the number of users, activation probability and type of water medium. The presented conclusions provide valuable insights into the design of an SA-based solution for IoUT communications.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司