We establish the notion of limit consistency as a modular part in proving the consistency of lattice Boltzmann equations (LBE) with respect to a given partial differential equation (PDE) system. The incompressible Navier-Stokes equations (NSE) are used as paragon. Based upon the diffusion limit [L. Saint-Raymond (2003), doi: 10.1016/S0012-9593(03)00010-7] of the Bhatnagar-Gross-Krook (BGK) Boltzmann equation towards the NSE, we provide a successive discretization by nesting conventional Taylor expansions and finite differences. Elaborating the work in [M. J. Krause (2010), doi: 10.5445/IR/1000019768], we track the discretization state of the domain for the particle distribution functions and measure truncation errors at all levels within the derivation procedure. Via parametrizing equations and proving the limit consistency of the respective sequences, we retain the path towards the targeted PDE at each step of discretization, i.e. for the discrete velocity BGK Boltzmann equation and the space-time discretized LBE. As a direct result, we unfold the discretization technique of lattice Boltzmann methods as chaining finite differences and provide a generic top-down derivation of the numerical scheme which upholds the continuous limit.
In this study we consider unconditionally non-oscillatory, high order implicit time marching based on time-limiters. The first aspect of our work is to propose the high resolution Limited-DIRK3 (L-DIRK3) scheme for conservation laws and convection-diffusion equations in the method-of-lines framework. The scheme can be used in conjunction with an arbitrary high order spatial discretization scheme such as 5th order WENO scheme. It can be shown that the strongly S-stable DIRK3 scheme is not SSP and may introduce strong oscillations under large time step. To overcome the oscillatory nature of DIRK3, the key idea of L-DIRK3 scheme is to apply local time-limiters (K.Duraisamy, J.D.Baeder, J-G Liu), with which the order of accuracy in time is locally dropped to first order in the regions where the evolution of solution is not smooth. In this way, the monotonicity condition is locally satisfied, while a high order of accuracy is still maintained in most of the solution domain. For convenience of applications to systems of equations, we propose a new and simple construction of time-limiters which allows flexible choice of reference quantity with minimal computation cost. Another key aspect of our work is to extend the application of time-limiter schemes to multidimensional problems and convection-diffusion equations. Numerical experiments for scalar/systems of equations in one- and two-dimensions confirm the high resolution and the improved stability of L-DIRK3 under large time steps. Moreover, the results indicate the potential of time-limiter schemes to serve as a generic and convenient methodology to improve the stability of arbitrary DIRK methods.
Domain decomposition methods are a set of widely used tools for parallelization of partial differential equation solvers. Convergence is well studied for elliptic equations, but in the case of parabolic equations there are hardly any results for general Lipschitz domains in two or more dimensions. The aim of this work is therefore to construct a new framework for analyzing nonoverlapping domain decomposition methods for the heat equation in a space-time Lipschitz cylinder. The framework is based on a variational formulation, inspired by recent studies of space-time finite elements using Sobolev spaces with fractional time regularity. In this framework, the time-dependent Steklov--Poincar\'e operators are introduced and their essential properties are proven. We then derive the interface interpretations of the Dirichlet--Neumann, Neumann--Neumann and Robin--Robin methods and show that these methods are well defined. Finally, we prove convergence of the Robin--Robin method and introduce a modified method with stronger convergence properties.
The utilization of renewable energy technologies, particularly hydrogen, has seen a boom in interest and has spread throughout the world. Ethanol steam reformation is one of the primary methods capable of producing hydrogen efficiently and reliably. This paper provides an in-depth study of the reformulated system both theoretically and numerically, as well as a plan to explore the possibility of converting the system into its conservation form. Lastly, we offer an overview of several numerical approaches for solving the general first-order quasi-linear hyperbolic equation to the particular model for ethanol steam reforming (ESR). We conclude by presenting some results that would enable the usage of these ODE/PDE solvers to be used in non-linear model predictive control (NMPC) algorithms and discuss the limitations of our approach and directions for future work.
Traditional control methods of robotic peg-in-hole assembly rely on complex contact state analysis. Reinforcement learning (RL) is gradually becoming a preferred method of controlling robotic peg-in-hole assembly tasks. However, the training process of RL is quite time-consuming because RL methods are always globally connected, which means all state components are assumed to be the input of policies for all action components, thus increasing action space and state space to be explored. In this paper, we first define continuous space serialized Shapley value (CS3) and construct a connection graph to clarify the correlativity of action components on state components. Then we propose a local connection reinforcement learning (LCRL) method based on the connection graph, which eliminates the influence of irrelevant state components on the selection of action components. The simulation and experiment results demonstrate that the control strategy obtained through LCRL method improves the stability and rapidity of the control process. LCRL method will enhance the data-efficiency and increase the final reward of the training process.
We numerically compute the lowest Laplacian eigenvalues of several two-dimensional shapes with dihedral symmetry at arbitrary precision arithmetic. Our approach is based on the method of particular solutions with domain decomposition. We are particularly interested in asymptotic expansions of the eigenvalues $\lambda(n)$ of shapes with $n$ edges that are of the form $\lambda(n) \sim x\sum_{k=0}^{\infty} \frac{C_k(x)}{n^k}$ where $x$ is the limiting eigenvalue for $n\rightarrow \infty$. Expansions of this form have previously only been known for regular polygons with Dirichlet boundary condition and (quite surprisingly) involve Riemann zeta values and single-valued multiple zeta values, which makes them interesting to study. We provide numerical evidence for closed-form expressions of higher order $C_k(x)$ and give more examples of shapes for which such expansions are possible (including regular polygons with Neumann boundary condition, regular star polygons and star shapes with sinusoidal boundary).
In some inferential statistical methods, such as tests and confidence intervals, it is important to describe the stochastic behavior of statistical functionals, aside from their large sample properties. We study such behavior in terms of the usual stochastic order. For this purpose, we introduce a generalized family of stochastic orders, which is referred to as transform orders, showing that it provides a flexible framework for deriving stochastic monotonicity results. Given that our general definition makes it possible to obtain some well-known ordering relations as particular cases, we can easily apply our method to different families of functionals. These include some prominent inequality measures, such as the generalized entropy, the Gini index, and its generalizations. We also illustrate the applicability of our approach by determining the least favorable distribution, and the behavior of some bootstrap statistics, in some goodness-of-fit testing procedures.
This chapter discusses the intricacies of cybersecurity agents' perception. It addresses the complexity of perception and illuminates how perception shapes and influences the decision-making process. It then explores the necessary considerations when crafting the world representation and discusses the power and bandwidth constraints of perception and the underlying issues of AICA's trust in perception. On these foundations, it provides the reader with a guide to developing perception models for AICA, discussing the trade-offs of each objective state approximation. The guide is written in the context of the CYST cybersecurity simulation engine, which aims to closely model cybersecurity interactions and can be used as a basis for developing AICA. Because CYST is freely available, the reader is welcome to try implementing and evaluating the proposed methods for themselves.
The existing discrete variational derivative method is only second-order accurate and fully implicit. In this paper, we propose a framework to construct an arbitrary high-order implicit (original) energy stable scheme and a second-order semi-implicit (modified) energy stable scheme. Combined with the Runge--Kutta process, we can build an arbitrary high-order and unconditionally (original) energy stable scheme based on the discrete variational derivative method. The new energy stable scheme is implicit and leads to a large sparse nonlinear algebraic system at each time step, which can be efficiently solved by using an inexact Newton type algorithm. To avoid solving nonlinear algebraic systems, we then present a relaxed discrete variational derivative method, which can construct second-order, linear, and unconditionally (modified) energy stable schemes. Several numerical simulations are performed to investigate the efficiency, stability, and accuracy of the newly proposed schemes.
Motion planning and control are crucial components of robotics applications. Here, spatio-temporal hard constraints like system dynamics and safety boundaries (e.g., obstacles in automated driving) restrict the robot's motions. Direct methods from optimal control solve a constrained optimization problem. However, in many applications finding a proper cost function is inherently difficult because of the weighting of partially conflicting objectives. On the other hand, Imitation Learning (IL) methods such as Behavior Cloning (BC) provide a intuitive framework for learning decision-making from offline demonstrations and constitute a promising avenue for planning and control in complex robot applications. Prior work primarily relied on soft-constraint approaches, which use additional auxiliary loss terms describing the constraints. However, catastrophic safety-critical failures might occur in out-of-distribution (OOD) scenarios. This work integrates the flexibility of IL with hard constraint handling in optimal control. Our approach constitutes a general framework for constraint robotic motion planning and control using offline IL. Hard constraints are integrated into the learning problem in a differentiable manner, via explicit completion and gradient-based correction. Simulated experiments of mobile robot navigation and automated driving provide evidence for the performance of the proposed method.
This work proposes a fast iterative method for local steric Poisson--Boltzmann (PB) theories, in which the electrostatic potential is governed by the Poisson's equation and ionic concentrations satisfy equilibrium conditions. To present the method, we focus on a local steric PB theory derived from a lattice-gas model, as an example. The advantages of the proposed method in efficiency are achieved by treating ionic concentrations as scalar implicit functions of the electrostatic potential, though such functions are only numerically achievable. The existence, uniqueness, boundness, and smoothness of such functions are rigorously established. A Newton iteration method with truncation is proposed to solve a nonlinear system discretized from the generalized PB equations. The existence and uniqueness of the solution to the discretized nonlinear system are established by showing that it is a unique minimizer of a constructed convex energy. Thanks to the boundness of ionic concentrations, truncation bounds for the potential are obtained by using the extremum principle. The truncation step in iterations is shown to be energy and error decreasing. To further speed-up computations, we propose a novel precomputing-interpolation strategy, which is applicable to other local steric PB theories and makes the proposed methods for solving steric PB theories as efficient as for solving the classical PB theory. Analysis on the Newton iteration method with truncation shows local quadratic convergence for the proposed numerical methods. Applications to realistic biomolecular solvation systems reveal that counterions with steric hindrance stratify in an order prescribed by the parameter of ionic valence-to-volume ratio. Finally, we remark that the proposed iterative methods for local steric PB theories can be readily incorporated in well-known classical PB solvers.