We consider the termination problem for triangular weakly non-linear loops (twn-loops) over some ring $\mathcal{S}$ like $\mathbb{Z}$, $\mathbb{Q}$, or $\mathbb{R}$. Essentially, the guard of such a loop is an arbitrary quantifier-free Boolean formula over (possibly non-linear) polynomial inequations, and the body is a single assignment of the form $(x_1, \ldots, x_d) \longleftarrow (c_1 \cdot x_1 + p_1, \ldots, c_d \cdot x_d + p_d)$ where each $x_i$ is a variable, $c_i \in \mathcal{S}$, and each $p_i$ is a (possibly non-linear) polynomial over $\mathcal{S}$ and the variables $x_{i+1},\ldots,x_{d}$. We show that the question of termination can be reduced to the existential fragment of the first-order theory of $\mathcal{S}$ and $\mathbb{R}$. For loops over $\mathbb{R}$, our reduction implies decidability of termination. For loops over $\mathbb{Z}$ and $\mathbb{Q}$, it proves semi-decidability of non-termination. Furthermore, we present a transformation to convert certain non-twn-loops into twn-form. Then the original loop terminates iff the transformed loop terminates over a specific subset of $\mathbb{R}$, which can also be checked via our reduction. Moreover, we formalize a technique to linearize twn-loops in our setting and analyze its complexity. Based on these results, we prove complexity bounds for the termination problem of twn-loops as well as tight bounds for two important classes of loops which can always be transformed into twn-loops. Finally, we show that there is an important class of linear loops where our decision procedure results in an efficient procedure for termination analysis, i.e., where the parameterized complexity of deciding termination is polynomial.
A vertex set $D$ in a finite undirected graph $G$ is an {\em efficient dominating set} (\emph{e.d.s.}\ for short) of $G$ if every vertex of $G$ is dominated by exactly one vertex of $D$. The \emph{Efficient Domination} (ED) problem, which asks for the existence of an e.d.s.\ in $G$, is known to be \NP-complete for chordal bipartite graphs as well as for $P_7$-free graphs, and even for very restricted $H$-free bipartite graph classes such as for $K_{1,4}$-free bipartite graphs as well as for $C_4$-free bipartite graphs while it is solvable in polynomial time for $P_8$-free bipartite graphs as well as for $S_{1,3,3}$-free bipartite graphs and for $S_{1,1,5}$-free bipartite graphs. Here we show that ED can be solved in polynomial time for $(S_{1,2,5},S_{3,3,3})$-free chordal bipartite graphs.
We establish estimates on the error made by the Deep Ritz Method for elliptic problems on the space $H^1(\Omega)$ with different boundary conditions. For Dirichlet boundary conditions, we estimate the error when the boundary values are approximately enforced through the boundary penalty method. Our results apply to arbitrary and in general non linear classes $V\subseteq H^1(\Omega)$ of ansatz functions and estimate the error in dependence of the optimization accuracy, the approximation capabilities of the ansatz class and -- in the case of Dirichlet boundary values -- the penalisation strength $\lambda$. For non-essential boundary conditions the error of the Ritz method decays with the same rate as the approximation rate of the ansatz classes. For essential boundary conditions, given an approximation rate of $r$ in $H^1(\Omega)$ and an approximation rate of $s$ in $L^2(\partial\Omega)$ of the ansatz classes, the optimal decay rate of the estimated error is $\min(s/2, r)$ and achieved by choosing $\lambda_n\sim n^{s}$. We discuss the implications for ansatz classes which are given through ReLU networks and the relation to existing estimates for finite element functions.
This paper considers the finite element solution of the boundary value problem of Poisson's equation and proposes a guaranteed em a posteriori local error estimation based on the hypercircle method. Compared to the existing literature on qualitative error estimation, the proposed error estimation provides an explicit and sharp bound for the approximation error in the subdomain of interest, and its efficiency can be enhanced by further utilizing a non-uniform mesh. Such a result is applicable to problems without $H^2$-regularity, since it only utilizes the first order derivative of the solution. The efficiency of the proposed method is demonstrated by numerical experiments for both convex and non-convex 2D domains with uniform or non-uniform meshes.
The non-dominated sorting genetic algorithm II (NSGA-II) is the most intensively used multi-objective evolutionary algorithm (MOEA) in real-world applications. However, in contrast to several simple MOEAs analyzed also via mathematical means, no such study exists for the NSGA-II so far. In this work, we show that mathematical runtime analyses are feasible also for the NSGA-II. As particular results, we prove that with a population size larger than the Pareto front size by a constant factor, the NSGA-II with two classic mutation operators and three different ways to select the parents satisfies the same asymptotic runtime guarantees as the SEMO and GSEMO algorithms on the basic OneMinMax and LOTZ benchmark functions. However, if the population size is only equal to the size of the Pareto front, then the NSGA-II cannot efficiently compute the full Pareto front (for an exponential number of iterations, the population will always miss a constant fraction of the Pareto front). Our experiments confirm the above findings.
In this paper, we study the single-source shortest-path (SSSP) problem with positive edge weights, which is a notoriously hard problem in the parallel context. In practice, the $\Delta$-stepping algorithm proposed by Meyer and Sanders has been widely adopted. However, $\Delta$-stepping has no known worst-case bounds for general graphs. The performance of $\Delta$-stepping also highly relies on the parameter $\Delta$. There have also been lots of algorithms with theoretical bounds, such as Radius-stepping, but they either have no implementations available or are much slower than $\Delta$-stepping in practice. We propose a stepping algorithm framework that generalizes existing algorithms such as $\Delta$-stepping and Radius-stepping. The framework allows for similar analysis and implementations of all stepping algorithms. We also propose a new ADT, lazy-batched priority queue (LaB-PQ), that abstracts the semantics of the priority queue needed by the stepping algorithms. We provide two data structures for LaB-PQ, focusing on theoretical and practical efficiency, respectively. Based on the new framework and LaB-PQ, we show two new stepping algorithms, $\rho$-stepping and $\Delta^*$-stepping, that are simple, with non-trivial worst-case bounds, and fast in practice. The stepping algorithm framework also provides almost identical implementations for three algorithms: Bellman-Ford, $\Delta^*$-stepping, and $\rho$-stepping. We compare our code with four state-of-the-art implementations. On five social and web graphs, $\rho$-stepping is 1.3--2.5x faster than all the existing implementations. On two road graphs, our $\Delta^*$-stepping is at least 14\% faster than existing implementations, while $\rho$-stepping is also competitive. The almost identical implementations for stepping algorithms also allow for in-depth analyses and comparisons among the stepping algorithms in practice.
Despite the empirical success of meta reinforcement learning (meta-RL), there are still a number poorly-understood discrepancies between theory and practice. Critically, biased gradient estimates are almost always implemented in practice, whereas prior theory on meta-RL only establishes convergence under unbiased gradient estimates. In this work, we investigate such a discrepancy. In particular, (1) We show that unbiased gradient estimates have variance $\Theta(N)$ which linearly depends on the sample size $N$ of the inner loop updates; (2) We propose linearized score function (LSF) gradient estimates, which have bias $\mathcal{O}(1/\sqrt{N})$ and variance $\mathcal{O}(1/N)$; (3) We show that most empirical prior work in fact implements variants of the LSF gradient estimates. This implies that practical algorithms "accidentally" introduce bias to achieve better performance; (4) We establish theoretical guarantees for the LSF gradient estimates in meta-RL regarding its convergence to stationary points, showing better dependency on $N$ than prior work when $N$ is large.
Multi-party random number generation is a key building-block in many practical protocols. While straightforward to solve when all parties are trusted to behave correctly, the problem becomes much more difficult in the presence of faults. In this context, this paper presents RandSolomon, a protocol that allows a network of N processes to produce an unpredictable common random number among the non-faulty of them. We provide optimal resilience for partially-synchronous systems where less than a third of the participants might behave arbitrarily and, contrary to many solutions, we do not require at any point faulty-processes to be responsive.
The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.