亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ranking is a crucial module using in the recommender system. In particular, the ranking module using in our YoungTao recommendation scenario is to provide an ordered list of items to users, to maximize the click number throughout the recommendation session for each user. However, we found that the traditional ranking method for optimizing Click-Through rate(CTR) cannot address our ranking scenario well, since it completely ignores user leaving, and CTR is the optimization goal for the one-step recommendation. To effectively undertake the purpose of our ranking module, we propose a long-term optimization goal, named as CTE (Click-Through quantity expectation), for explicitly taking the behavior of user leaving into account. Based on CTE, we propose an effective model trained by reinforcement learning. Moreover, we build a simulation environment from offline log data for estimating PBR and CTR. We conduct extensive experiments on offline datasets and an online e-commerce scenario in TaoBao. Experimental results show that our method can boost performance effectively

相關內容

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at //github.com/yuweihao/MM-Vet.

In the rapid development of artificial intelligence, solving complex AI tasks is a crucial technology in intelligent mobile networks. Despite the good performance of specialized AI models in intelligent mobile networks, they are unable to handle complicated AI tasks. To address this challenge, we propose Systematic Artificial Intelligence (SAI), which is a framework designed to solve AI tasks by leveraging Large Language Models (LLMs) and JSON-format intent-based input to connect self-designed model library and database. Specifically, we first design a multi-input component, which simultaneously integrates Large Language Models (LLMs) and JSON-format intent-based inputs to fulfill the diverse intent requirements of different users. In addition, we introduce a model library module based on model cards which employ model cards to pairwise match between different modules for model composition. Model cards contain the corresponding model's name and the required performance metrics. Then when receiving user network requirements, we execute each subtask for multiple selected model combinations and provide output based on the execution results and LLM feedback. By leveraging the language capabilities of LLMs and the abundant AI models in the model library, SAI can complete numerous complex AI tasks in the communication network, achieving impressive results in network optimization, resource allocation, and other challenging tasks.

Speech Command Recognition (SCR), which deals with identification of short uttered speech commands, is crucial for various applications, including IoT devices and assistive technology. Despite the promise shown by Convolutional Neural Networks (CNNs) in SCR tasks, their efficacy relies heavily on hyper-parameter selection, which is typically laborious and time-consuming when done manually. This paper introduces a hyper-parameter selection method for CNNs based on the Differential Evolution (DE) algorithm, aiming to enhance performance in SCR tasks. Training and testing with the Google Speech Command (GSC) dataset, the proposed approach showed effectiveness in classifying speech commands. Moreover, a comparative analysis with Genetic Algorithm based selections and other deep CNN (DCNN) models highlighted the efficiency of the proposed DE algorithm in hyper-parameter selection for CNNs in SCR tasks.

Recent advancements in diffusion models have significantly enhanced the data synthesis with 2D control. Yet, precise 3D control in street view generation, crucial for 3D perception tasks, remains elusive. Specifically, utilizing Bird's-Eye View (BEV) as the primary condition often leads to challenges in geometry control (e.g., height), affecting the representation of object shapes, occlusion patterns, and road surface elevations, all of which are essential to perception data synthesis, especially for 3D object detection tasks. In this paper, we introduce MagicDrive, a novel street view generation framework offering diverse 3D geometry controls, including camera poses, road maps, and 3D bounding boxes, together with textual descriptions, achieved through tailored encoding strategies. Besides, our design incorporates a cross-view attention module, ensuring consistency across multiple camera views. With MagicDrive, we achieve high-fidelity street-view synthesis that captures nuanced 3D geometry and various scene descriptions, enhancing tasks like BEV segmentation and 3D object detection.

Many real-world prediction tasks have outcome variables that have characteristic heavy-tail distributions. Examples include copies of books sold, auction prices of art pieces, demand for commodities in warehouses, etc. By learning heavy-tailed distributions, "big and rare" instances (e.g., the best-sellers) will have accurate predictions. Most existing approaches are not dedicated to learning heavy-tailed distribution; thus, they heavily under-predict such instances. To tackle this problem, we introduce Learning to Place (L2P), which exploits the pairwise relationships between instances for learning. In its training phase, L2P learns a pairwise preference classifier: is instance A > instance B? In its placing phase, L2P obtains a prediction by placing the new instance among the known instances. Based on its placement, the new instance is then assigned a value for its outcome variable. Experiments on real data show that L2P outperforms competing approaches in terms of accuracy and ability to reproduce heavy-tailed outcome distribution. In addition, L2P provides an interpretable model by placing each predicted instance in relation to its comparable neighbors. Interpretable models are highly desirable when lives and treasure are at stake.

Vehicle-to-Everything (V2X) collaborative perception is crucial for autonomous driving. However, achieving high-precision V2X perception requires a significant amount of annotated real-world data, which can always be expensive and hard to acquire. Simulated data have raised much attention since they can be massively produced at an extremely low cost. Nevertheless, the significant domain gap between simulated and real-world data, including differences in sensor type, reflectance patterns, and road surroundings, often leads to poor performance of models trained on simulated data when evaluated on real-world data. In addition, there remains a domain gap between real-world collaborative agents, e.g. different types of sensors may be installed on autonomous vehicles and roadside infrastructures with different extrinsics, further increasing the difficulty of sim2real generalization. To take full advantage of simulated data, we present a new unsupervised sim2real domain adaptation method for V2X collaborative detection named Decoupled Unsupervised Sim2Real Adaptation (DUSA). Our new method decouples the V2X collaborative sim2real domain adaptation problem into two sub-problems: sim2real adaptation and inter-agent adaptation. For sim2real adaptation, we design a Location-adaptive Sim2Real Adapter (LSA) module to adaptively aggregate features from critical locations of the feature map and align the features between simulated data and real-world data via a sim/real discriminator on the aggregated global feature. For inter-agent adaptation, we further devise a Confidence-aware Inter-agent Adapter (CIA) module to align the fine-grained features from heterogeneous agents under the guidance of agent-wise confidence maps. Experiments demonstrate the effectiveness of the proposed DUSA approach on unsupervised sim2real adaptation from the simulated V2XSet dataset to the real-world DAIR-V2X-C dataset.

Benchmarking is a common method for evaluating trajectory prediction models for autonomous driving. Existing benchmarks rely on datasets, which are biased towards more common scenarios, such as cruising, and distance-based metrics that are computed by averaging over all scenarios. Following such a regiment provides a little insight into the properties of the models both in terms of how well they can handle different scenarios and how admissible and diverse their outputs are. There exist a number of complementary metrics designed to measure the admissibility and diversity of trajectories, however, they suffer from biases, such as length of trajectories. In this paper, we propose a new benChmarking paRadIgm for evaluaTing trajEctoRy predIction Approaches (CRITERIA). Particularly, we propose 1) a method for extracting driving scenarios at varying levels of specificity according to the structure of the roads, models' performance, and data properties for fine-grained ranking of prediction models; 2) A set of new bias-free metrics for measuring diversity, by incorporating the characteristics of a given scenario, and admissibility, by considering the structure of roads and kinematic compliancy, motivated by real-world driving constraints. 3) Using the proposed benchmark, we conduct extensive experimentation on a representative set of the prediction models using the large scale Argoverse dataset. We show that the proposed benchmark can produce a more accurate ranking of the models and serve as a means of characterizing their behavior. We further present ablation studies to highlight contributions of different elements that are used to compute the proposed metrics.

Steganography is the art of hiding information in plain sight. This form of covert communication can be used by bad actors to propagate malware, exfiltrate victim data, and communicate with other bad actors. Current image steganography defenses rely upon steganalysis, or the detection of hidden messages. These methods, however, are non-blind as they require information about known steganography techniques and are easily bypassed. Recent work has instead focused on a defense mechanism known as sanitization, which eliminates hidden information from images. In this work, we introduce a novel blind deep learning steganography sanitization method that utilizes a diffusion model framework to sanitize universal and dependent steganography (DM-SUDS), which both sanitizes and preserves image quality. We evaluate this approach against state-of-the-art deep learning sanitization frameworks and provide further detailed analysis through an ablation study. DM-SUDS outperforms previous sanitization methods and improves image preservation MSE by 71.32%, PSNR by 22.43% and SSIM by 17.30%. This is the first blind deep learning image sanitization framework to meet these image quality results.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

北京阿比特科技有限公司