The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing development of highly autonomous vehicles, largely due to advances in deep learning, the availability of large-scale training datasets, and improvements in integrated sensor devices. However, a lack of interpretability in real-time decisions with contemporary learning methods impedes user trust and attenuates the widespread deployment and commercialization of such vehicles. Moreover, the issue is exacerbated when these cars are involved in or cause traffic accidents. Such drawback raises serious safety concerns from societal and legal perspectives. Consequently, explainability in end-to-end autonomous driving is essential to enable the safety of vehicular automation. However, the safety and explainability aspects of autonomous driving have generally been investigated disjointly by researchers in today's state of the art. In this paper, we aim to bridge the gaps between these topics and seek to answer the following research question: When and how can explanations improve safety of autonomous driving? In this regard, we first revisit established safety and state-of-the-art explainability techniques in autonomous driving. Furthermore, we present three critical case studies and show the pivotal role of explanations in enhancing self-driving safety. Finally, we describe our empirical investigation and reveal potential value, limitations, and caveats with practical explainable AI methods on their role of assuring safety and transparency for vehicle autonomy.
Learning compositional representation is a key aspect of object-centric learning as it enables flexible systematic generalization and supports complex visual reasoning. However, most of the existing approaches rely on auto-encoding objective, while the compositionality is implicitly imposed by the architectural or algorithmic bias in the encoder. This misalignment between auto-encoding objective and learning compositionality often results in failure of capturing meaningful object representations. In this study, we propose a novel objective that explicitly encourages compositionality of the representations. Built upon the existing object-centric learning framework (e.g., slot attention), our method incorporates additional constraints that an arbitrary mixture of object representations from two images should be valid by maximizing the likelihood of the composite data. We demonstrate that incorporating our objective to the existing framework consistently improves the objective-centric learning and enhances the robustness to the architectural choices.
The availability of high-quality datasets is crucial for the development of behavior prediction algorithms in autonomous vehicles. This paper highlights the need for standardizing the use of certain datasets for motion forecasting research to simplify comparative analysis and proposes a set of tools and practices to achieve this. Drawing on extensive experience and a comprehensive review of current literature, we summarize our proposals for preprocessing, visualizing, and evaluation in the form of an open-sourced toolbox designed for researchers working on trajectory prediction problems. The clear specification of necessary preprocessing steps and evaluation metrics is intended to alleviate development efforts and facilitate the comparison of results across different studies. The toolbox is available at: //github.com/westny/dronalize.
Recent advances in deep learning have promoted the advent of many computational systems capable of performing intelligent actions that, until then, were restricted to the human intellect. In the particular case of human languages, these advances allowed the introduction of applications like ChatGPT that are capable of generating coherent text without being explicitly programmed to do so. Instead, these models use large volumes of textual data to learn meaningful representations of human languages. Associated with these advances, concerns about copyright and data privacy infringements caused by these applications have emerged. Despite these concerns, the pace at which new natural language processing applications continued to be developed largely outperformed the introduction of new regulations. Today, communication barriers between legal experts and computer scientists motivate many unintentional legal infringements during the development of such applications. In this paper, a multidisciplinary team intends to bridge this communication gap and promote more compliant Portuguese NLP research by presenting a series of everyday NLP use cases, while highlighting the Portuguese legislation that may arise during its development.
The problem of optimizing discrete phases in a reconfigurable intelligent surface (RIS) to maximize the received power at a user equipment is addressed. Necessary and sufficient conditions to achieve this maximization are given. These conditions are employed in an algorithm to achieve the maximization. New versions of the algorithm are given that are proven to achieve convergence in N or fewer steps whether the direct link is completely blocked or not, where N is the number of the RIS elements, whereas previously published results achieve this in KN or 2N number of steps where K is the number of discrete phases. Thus, for a discrete-phase RIS, the techniques presented in this paper achieve the optimum received power in the smallest number of steps published in the literature. In addition, in each of those N steps, the techniques presented in this paper determine only one or a small number of phase shifts with a simple elementwise update rule, which result in a substantial reduction of computation time, as compared to the algorithms in the literature. As a secondary result, we define the uniform polar quantization (UPQ) algorithm which is an intuitive quantization algorithm that can approximate the continuous solution with an approximation ratio of sinc^2(1/K) and achieve low time-complexity, given perfect knowledge of the channel.
Field experiments and computer simulations are effective but time-consuming methods of measuring the quality of engineered systems at different settings. To reduce the total time required, experimenters may employ Bayesian optimization, which is parsimonious with measurements, and take measurements of multiple settings simultaneously, in a batch. In practice, experimenters use very few batches, thus, it is imperative that each batch be as informative as possible. Typically, the initial batch in a Batch Bayesian Optimization (BBO) is constructed from a quasi-random sample of settings values. We propose a batch-design acquisition function, Minimal Terminal Variance (MTV), that designs a batch by optimization rather than random sampling. MTV adapts a design criterion function from Design of Experiments, called I-Optimality, which minimizes the variance of the post-evaluation estimates of quality, integrated over the entire space of settings. MTV weights the integral by the probability that a setting is optimal, making it able to design not only an initial batch but all subsequent batches, as well. Applicability to both initialization and subsequent batches is novel among acquisition functions. Numerical experiments on test functions and simulators show that MTV compares favorably to other BBO methods.
This research explores the application of Large Language Models (LLMs) for automating the extraction of requirement-related legal content in the food safety domain and checking legal compliance of regulatory artifacts. With Industry 4.0 revolutionizing the food industry and with the General Data Protection Regulation (GDPR) reshaping privacy policies and data processing agreements, there is a growing gap between regulatory analysis and recent technological advancements. This study aims to bridge this gap by leveraging LLMs, namely BERT and GPT models, to accurately classify legal provisions and automate compliance checks. Our findings demonstrate promising results, indicating LLMs' significant potential to enhance legal compliance and regulatory analysis efficiency, notably by reducing manual workload and improving accuracy within reasonable time and financial constraints.
Thermal spray coating is a critical process in many industries, involving the application of coatings to surfaces to enhance their functionality. This paper proposes a framework for modelling and predicting critical target variables in thermal spray coating processes, based on the application of statistical design of experiments (DoE) and the modelling of the data using generalized linear models (GLMs) with a particular emphasis on gamma regression. Experimental data obtained from thermal spray coating trials are used to validate the presented approach, demonstrating that it is able to accurately model and predict critical target variables. As such, the framework has significant potential for the optimization of thermal spray coating processes, and can contribute to the development of more efficient and effective coating technologies in various industries.
We investigate the role of various demonstration components in the in-context learning (ICL) performance of large language models (LLMs). Specifically, we explore the impacts of ground-truth labels, input distribution, and complementary explanations, particularly when these are altered or perturbed. We build on previous work, which offers mixed findings on how these elements influence ICL. To probe these questions, we employ explainable NLP (XNLP) methods and utilize saliency maps of contrastive demonstrations for both qualitative and quantitative analysis. Our findings reveal that flipping ground-truth labels significantly affects the saliency, though it's more noticeable in larger LLMs. Our analysis of the input distribution at a granular level reveals that changing sentiment-indicative terms in a sentiment analysis task to neutral ones does not have as substantial an impact as altering ground-truth labels. Finally, we find that the effectiveness of complementary explanations in boosting ICL performance is task-dependent, with limited benefits seen in sentiment analysis tasks compared to symbolic reasoning tasks. These insights are critical for understanding the functionality of LLMs and guiding the development of effective demonstrations, which is increasingly relevant in light of the growing use of LLMs in applications such as ChatGPT. Our research code is publicly available at //github.com/paihengxu/XICL.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.