Gaussian process (GP) regression is a fundamental tool in Bayesian statistics. It is also known as kriging and is the Bayesian counterpart to the frequentist kernel ridge regression. Most of the theoretical work on GP regression has focused on a large-$n$ asymptotics, characterising the behaviour of GP regression as the amount of data increases. Fixed-sample analysis is much more difficult outside of simple cases, such as locations on a regular grid. In this work we perform a fixed-sample analysis that was first studied in the context of approximation theory by Driscoll & Fornberg (2002), called the "flat limit". In flat-limit asymptotics, the goal is to characterise kernel methods as the length-scale of the kernel function tends to infinity, so that kernels appear flat over the range of the data. Surprisingly, this limit is well-defined, and displays interesting behaviour: Driscoll & Fornberg showed that radial basis interpolation converges in the flat limit to polynomial interpolation, if the kernel is Gaussian. Leveraging recent results on the spectral behaviour of kernel matrices in the flat limit, we study the flat limit of Gaussian process regression. Results show that Gaussian process regression tends in the flat limit to (multivariate) polynomial regression, or (polyharmonic) spline regression, depending on the kernel. Importantly, this holds for both the predictive mean and the predictive variance, so that the posterior predictive distributions become equivalent. Our results have practical consequences: for instance, they show that optimal GP predictions in the sense of leave-one-out loss may occur at very large length-scales, which would be invisible to current implementations because of numerical difficulties.
Dropout is designed to relieve the overfitting problem in high-level vision tasks but is rarely applied in low-level vision tasks, like image super-resolution (SR). As a classic regression problem, SR exhibits a different behaviour as high-level tasks and is sensitive to the dropout operation. However, in this paper, we show that appropriate usage of dropout benefits SR networks and improves the generalization ability. Specifically, dropout is better embedded at the end of the network and is significantly helpful for the multi-degradation settings. This discovery breaks our common sense and inspires us to explore its working mechanism. We further use two analysis tools -- one is from recent network interpretation works, and the other is specially designed for this task. The analysis results provide side proofs to our experimental findings and show us a new perspective to understand SR networks.
We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.
This tutorial aims to provide an intuitive understanding of the Gaussian processes regression. Gaussian processes regression (GPR) models have been widely used in machine learning applications because of their representation flexibility and inherent uncertainty measures over predictions. The basic concepts that a Gaussian process is built on, including multivariate normal distribution, kernels, non-parametric models, and joint and conditional probability were explained first. Next, the GPR was described concisely together with an implementation of a standard GPR algorithm. Beyond the standard GPR, packages to implement state-of-the-art Gaussian processes algorithms were reviewed. This tutorial was written in an accessible way to make sure readers without a machine learning background can obtain a good understanding of the GPR basics.
We investigate the feature compression of high-dimensional ridge regression using the optimal subsampling technique. Specifically, based on the basic framework of random sampling algorithm on feature for ridge regression and the A-optimal design criterion, we first obtain a set of optimal subsampling probabilities. Considering that the obtained probabilities are uneconomical, we then propose the nearly optimal ones. With these probabilities, a two step iterative algorithm is established which has lower computational cost and higher accuracy. We provide theoretical analysis and numerical experiments to support the proposed methods. Numerical results demonstrate the decent performance of our methods.
The success of large-scale models in recent years has increased the importance of statistical models with numerous parameters. Several studies have analyzed over-parameterized linear models with high-dimensional data that may not be sparse; however, existing results depend on the independent setting of samples. In this study, we analyze a linear regression model with dependent time series data under over-parameterization settings. We consider an estimator via interpolation and developed a theory for excess risk of the estimator under multiple dependence types. This theory can treat infinite-dimensional data without sparsity and handle long-memory processes in a unified manner. Moreover, we bound the risk in our theory via the integrated covariance and nondegeneracy of autocorrelation matrices. The results show that the convergence rate of risks with short-memory processes is identical to that of cases with independent data, while long-memory processes slow the convergence rate. We also present several examples of specific dependent processes that can be applied to our setting.
In this work, we focus on the high-dimensional trace regression model with a low-rank coefficient matrix. We establish a nearly optimal in-sample prediction risk bound for the rank-constrained least-squares estimator under no assumptions on the design matrix. Lying at the heart of the proof is a covering number bound for the family of projection operators corresponding to the subspaces spanned by the design. By leveraging this complexity result, we perform a power analysis for a permutation test on the existence of a low-rank signal under the high-dimensional trace regression model. We show that the permutation test based on the rank-constrained least-squares estimator achieves non-trivial power with no assumptions on the minimum (restricted) eigenvalue of the covariance matrix of the design. Finally, we use alternating minimization to approximately solve the rank-constrained least-squares problem to evaluate its empirical in-sample prediction risk and power of the resulting permutation test in our numerical study.
We study the acceleration of the Local Polynomial Interpolation-based Gradient Descent method (LPI-GD) recently proposed for the approximate solution of empirical risk minimization problems (ERM). We focus on loss functions that are strongly convex and smooth with condition number $\sigma$. We additionally assume the loss function is $\eta$-H\"older continuous with respect to the data. The oracle complexity of LPI-GD is $\tilde{O}\left(\sigma m^d \log(1/\varepsilon)\right)$ for a desired accuracy $\varepsilon$, where $d$ is the dimension of the parameter space, and $m$ is the cardinality of an approximation grid. The factor $m^d$ can be shown to scale as $O((1/\varepsilon)^{d/2\eta})$. LPI-GD has been shown to have better oracle complexity than gradient descent (GD) and stochastic gradient descent (SGD) for certain parameter regimes. We propose two accelerated methods for the ERM problem based on LPI-GD and show an oracle complexity of $\tilde{O}\left(\sqrt{\sigma} m^d \log(1/\varepsilon)\right)$. Moreover, we provide the first empirical study on local polynomial interpolation-based gradient methods and corroborate that LPI-GD has better performance than GD and SGD in some scenarios, and the proposed methods achieve acceleration.
Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, ability to handle missing data, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel semiparametric methodology for count time series by warping a Gaussian DLM. The warping function has two components: a (nonparametric) transformation operator that provides distributional flexibility and a rounding operator that ensures the correct support for the discrete data-generating process. We develop conjugate inference for the warped DLM, which enables analytic and recursive updates for the state space filtering and smoothing distributions. We leverage these results to produce customized and efficient algorithms for inference and forecasting, including Monte Carlo simulation for offline analysis and an optimal particle filter for online inference. This framework unifies and extends a variety of discrete time series models and is valid for natural counts, rounded values, and multivariate observations. Simulation studies illustrate the excellent forecasting capabilities of the warped DLM. The proposed approach is applied to a multivariate time series of daily overdose counts and demonstrates both modeling and computational successes.
Recent advances in computer vision has led to a growth of interest in deploying visual analytics model on mobile devices. However, most mobile devices have limited computing power, which prohibits them from running large scale visual analytics neural networks. An emerging approach to solve this problem is to offload the computation of these neural networks to computing resources at an edge server. Efficient computation offloading requires optimizing the trade-off between multiple objectives including compressed data rate, analytics performance, and computation speed. In this work, we consider a "split computation" system to offload a part of the computation of the YOLO object detection model. We propose a learnable feature compression approach to compress the intermediate YOLO features with light-weight computation. We train the feature compression and decompression module together with the YOLO model to optimize the object detection accuracy under a rate constraint. Compared to baseline methods that apply either standard image compression or learned image compression at the mobile and perform image decompression and YOLO at the edge, the proposed system achieves higher detection accuracy at the low to medium rate range. Furthermore, the proposed system requires substantially lower computation time on the mobile device with CPU only.
We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples.