亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The vulnerability of neural network classifiers to adversarial attacks is a major obstacle to their deployment in safety-critical applications. Regularization of network parameters during training can be used to improve adversarial robustness and generalization performance. Usually, the network is regularized end-to-end, with parameters at all layers affected by regularization. However, in settings where learning representations is key, such as self-supervised learning (SSL), layers after the feature representation will be discarded when performing inference. For these models, regularizing up to the feature space is more suitable. To this end, we propose a new spectral regularizer for representation learning that encourages black-box adversarial robustness in downstream classification tasks. In supervised classification settings, we show empirically that this method is more effective in boosting test accuracy and robustness than previously-proposed methods that regularize all layers of the network. We then show that this method improves the adversarial robustness of classifiers using representations learned with self-supervised training or transferred from another classification task. In all, our work begins to unveil how representational structure affects adversarial robustness.

相關內容

This research addresses the increasing demand for advanced navigation systems capable of operating within confined surroundings. A significant challenge in this field is developing an efficient planning framework that can generalize across various types of collision avoidance missions. Utilizing numerical optimal control techniques, this study proposes a unified optimization-based planning framework to meet these demands. We focus on handling two collision avoidance problems, i.e., the object not colliding with obstacles and not colliding with boundaries of the constrained region. The object or obstacle is denoted as a union of convex polytopes and ellipsoids, and the constrained region is denoted as an intersection of such convex sets. Using these representations, collision avoidance can be approached by formulating explicit constraints that separate two convex sets, or ensure that a convex set is contained in another convex set, referred to as separating constraints and containing constraints, respectively. We propose to use the hyperplane separation theorem to formulate differentiable separating constraints, and utilize the S-procedure and geometrical methods to formulate smooth containing constraints. We state that compared to the state of the art, the proposed formulations allow a considerable reduction in nonlinear program size and geometry-based initialization in auxiliary variables used to formulate collision avoidance constraints. Finally, the efficacy of the proposed unified planning framework is evaluated in two contexts, autonomous parking in tractor-trailer vehicles and overtaking on curved lanes. The results in both cases exhibit an improved computational performance compared to existing methods.

We investigate the set of invariant idempotent probabilities for countable idempotent iterated function systems (IFS) defined in compact metric spaces. We demonstrate that, with constant weights, there exists a unique invariant idempotent probability. Utilizing Secelean's approach to countable IFSs, we introduce partially finite idempotent IFSs and prove that the sequence of invariant idempotent measures for these systems converges to the invariant measure of the original countable IFS. We then apply these results to approximate such measures with discrete systems, producing, in the one-dimensional case, data series whose Higuchi fractal dimension can be calculated. Finally, we provide numerical approximations for two-dimensional cases and discuss the application of generalized Higuchi dimensions in these scenarios.

We investigate a Tikhonov regularization scheme specifically tailored for shallow neural networks within the context of solving a classic inverse problem: approximating an unknown function and its derivatives within a unit cubic domain based on noisy measurements. The proposed Tikhonov regularization scheme incorporates a penalty term that takes three distinct yet intricately related network (semi)norms: the extended Barron norm, the variation norm, and the Radon-BV seminorm. These choices of the penalty term are contingent upon the specific architecture of the neural network being utilized. We establish the connection between various network norms and particularly trace the dependence of the dimensionality index, aiming to deepen our understanding of how these norms interplay with each other. We revisit the universality of function approximation through various norms, establish rigorous error-bound analysis for the Tikhonov regularization scheme, and explicitly elucidate the dependency of the dimensionality index, providing a clearer understanding of how the dimensionality affects the approximation performance and how one designs a neural network with diverse approximating tasks.

With the development of deep learning technology, the detection and classification of distracted driving behaviour requires higher accuracy. Existing deep learning-based methods are computationally intensive and parameter redundant, limiting the efficiency and accuracy in practical applications. To solve this problem, this study proposes an improved YOLOv8 detection method based on the original YOLOv8 model by integrating the BoTNet module, GAM attention mechanism and EIoU loss function. By optimising the feature extraction and multi-scale feature fusion strategies, the training and inference processes are simplified, and the detection accuracy and efficiency are significantly improved. Experimental results show that the improved model performs well in both detection speed and accuracy, with an accuracy rate of 99.4%, and the model is smaller and easy to deploy, which is able to identify and classify distracted driving behaviours in real time, provide timely warnings, and enhance driving safety.

Linear causal disentanglement is a recent method in causal representation learning to describe a collection of observed variables via latent variables with causal dependencies between them. It can be viewed as a generalization of both independent component analysis and linear structural equation models. We study the identifiability of linear causal disentanglement, assuming access to data under multiple contexts, each given by an intervention on a latent variable. We show that one perfect intervention on each latent variable is sufficient and in the worst case necessary to recover parameters under perfect interventions, generalizing previous work to allow more latent than observed variables. We give a constructive proof that computes parameters via a coupled tensor decomposition. For soft interventions, we find the equivalence class of latent graphs and parameters that are consistent with observed data, via the study of a system of polynomial equations. Our results hold assuming the existence of non-zero higher-order cumulants, which implies non-Gaussianity of variables.

This work aims to extend the well-known high-order WENO finite-difference methods for systems of conservation laws to nonconservative hyperbolic systems. The main difficulty of these systems both from the theoretical and the numerical points of view comes from the fact that the definition of weak solution is not unique: according to the theory developed by Dal Maso, LeFloch, and Murat in 1995, it depends on the choice of a family of paths. A general strategy is proposed here in which WENO operators are not only used to reconstruct fluxes but also the nonconservative products of the system. Moreover, if a Roe linearization is available, the nonconservative products can be computed through matrix-vector operations instead of path-integrals. The methods are extended to problems with source terms and two different strategies are introduced to obtain well-balanced schemes. These numerical schemes will be then applied to the two-layer shallow water equations in one- and two- dimensions to obtain high-order methods that preserve water-at-rest steady states.

Residual neural networks are state-of-the-art deep learning models. Their continuous-depth analog, neural ordinary differential equations (ODEs), are also widely used. Despite their success, the link between the discrete and continuous models still lacks a solid mathematical foundation. In this article, we take a step in this direction by establishing an implicit regularization of deep residual networks towards neural ODEs, for nonlinear networks trained with gradient flow. We prove that if the network is initialized as a discretization of a neural ODE, then such a discretization holds throughout training. Our results are valid for a finite training time, and also as the training time tends to infinity provided that the network satisfies a Polyak-Lojasiewicz condition. Importantly, this condition holds for a family of residual networks where the residuals are two-layer perceptrons with an overparameterization in width that is only linear, and implies the convergence of gradient flow to a global minimum. Numerical experiments illustrate our results.

The intricacies inherent in contemporary real datasets demand more advanced statistical models to effectively address complex challenges. In this article we delve into problems related to identifying clusters across related groups, when additional covariate information is available. We formulate a novel Bayesian nonparametric approach based on mixture models, integrating ideas from the hierarchical Dirichlet process and "single-atoms" dependent Dirichlet process. The proposed method exhibits exceptional generality and flexibility, accommodating both continuous and discrete covariates through the utilization of appropriate kernel functions. We construct a robust and efficient Markov chain Monte Carlo (MCMC) algorithm involving data augmentation to tackle the intractable normalized weights. The versatility of the proposed model extends our capability to discern the relationship between covariates and clusters. Through testing on both simulated and real-world datasets, our model demonstrates its capacity to identify meaningful clusters across groups, providing valuable insights for a spectrum of applications.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司