Real-time semantic segmentation is a challenging task that requires high-accuracy models with low-inference times. Implementing these models on embedded systems is limited by hardware capability and memory usage, which produces bottlenecks. We propose an efficient model for real-time semantic segmentation called JetSeg, consisting of an encoder called JetNet, and an improved RegSeg decoder. The JetNet is designed for GPU-Embedded Systems and includes two main components: a new light-weight efficient block called JetBlock, that reduces the number of parameters minimizing memory usage and inference time without sacrificing accuracy; a new strategy that involves the combination of asymmetric and non-asymmetric convolutions with depthwise-dilated convolutions called JetConv, a channel shuffle operation, light-weight activation functions, and a convenient number of group convolutions for embedded systems, and an innovative loss function named JetLoss, which integrates the Precision, Recall, and IoUB losses to improve semantic segmentation and reduce computational complexity. Experiments demonstrate that JetSeg is much faster on workstation devices and more suitable for Low-Power GPU-Embedded Systems than existing state-of-the-art models for real-time semantic segmentation. Our approach outperforms state-of-the-art real-time encoder-decoder models by reducing 46.70M parameters and 5.14% GFLOPs, which makes JetSeg up to 2x faster on the NVIDIA Titan RTX GPU and the Jetson Xavier than other models. The JetSeg code is available at //github.com/mmontielpz/jetseg.
Sentence embeddings enable us to capture the semantic similarity of short texts. Most sentence embedding models are trained for general semantic textual similarity (STS) tasks. Therefore, to use sentence embeddings in a particular domain, the model must be adapted to it in order to achieve good results. Usually, this is done by fine-tuning the entire sentence embedding model for the domain of interest. While this approach yields state-of-the-art results, all of the model's weights are updated during fine-tuning, making this method resource-intensive. Therefore, instead of fine-tuning entire sentence embedding models for each target domain individually, we propose to train lightweight adapters. These domain-specific adapters do not require fine-tuning all underlying sentence embedding model parameters. Instead, we only train a small number of additional parameters while keeping the weights of the underlying sentence embedding model fixed. Training domain-specific adapters allows always using the same base model and only exchanging the domain-specific adapters to adapt sentence embeddings to a specific domain. We show that using adapters for parameter-efficient domain adaptation of sentence embeddings yields competitive performance within 1% of a domain-adapted, entirely fine-tuned sentence embedding model while only training approximately 3.6% of the parameters.
We present a deep learning method that propagates point-wise feature representations across shapes within a collection for the purpose of 3D shape segmentation. We propose a cross-shape attention mechanism to enable interactions between a shape's point-wise features and those of other shapes. The mechanism assesses both the degree of interaction between points and also mediates feature propagation across shapes, improving the accuracy and consistency of the resulting point-wise feature representations for shape segmentation. Our method also proposes a shape retrieval measure to select suitable shapes for cross-shape attention operations for each test shape. Our experiments demonstrate that our approach yields state-of-the-art results in the popular PartNet dataset.
While originally designed for image generation, diffusion models have recently shown to provide excellent pretrained feature representations for semantic segmentation. Intrigued by this result, we set out to explore how well diffusion-pretrained representations generalize to new domains, a crucial ability for any representation. We find that diffusion-pretraining achieves extraordinary domain generalization results for semantic segmentation, outperforming both supervised and self-supervised backbone networks. Motivated by this, we investigate how to utilize the model's unique ability of taking an input prompt, in order to further enhance its cross-domain performance. We introduce a scene prompt and a prompt randomization strategy to help further disentangle the domain-invariant information when training the segmentation head. Moreover, we propose a simple but highly effective approach for test-time domain adaptation, based on learning a scene prompt on the target domain in an unsupervised manner. Extensive experiments conducted on four synthetic-to-real and clear-to-adverse weather benchmarks demonstrate the effectiveness of our approaches. Without resorting to any complex techniques, such as image translation, augmentation, or rare-class sampling, we set a new state-of-the-art on all benchmarks. Our implementation will be publicly available at \url{//github.com/ETHRuiGong/PTDiffSeg}.
Despite its clinical utility, medical image segmentation (MIS) remains a daunting task due to images' inherent complexity and variability. Vision transformers (ViTs) have recently emerged as a promising solution to improve MIS; however, they require larger training datasets than convolutional neural networks. To overcome this obstacle, data-efficient ViTs were proposed, but they are typically trained using a single source of data, which overlooks the valuable knowledge that could be leveraged from other available datasets. Naivly combining datasets from different domains can result in negative knowledge transfer (NKT), i.e., a decrease in model performance on some domains with non-negligible inter-domain heterogeneity. In this paper, we propose MDViT, the first multi-domain ViT that includes domain adapters to mitigate data-hunger and combat NKT by adaptively exploiting knowledge in multiple small data resources (domains). Further, to enhance representation learning across domains, we integrate a mutual knowledge distillation paradigm that transfers knowledge between a universal network (spanning all the domains) and auxiliary domain-specific branches. Experiments on 4 skin lesion segmentation datasets show that MDViT outperforms state-of-the-art algorithms, with superior segmentation performance and a fixed model size, at inference time, even as more domains are added. Our code is available at //github.com/siyi-wind/MDViT.
Acoustic word embeddings (AWEs) are fixed-dimensional vector representations of speech segments that encode phonetic content so that different realisations of the same word have similar embeddings. In this paper we explore semantic AWE modelling. These AWEs should not only capture phonetics but also the meaning of a word (similar to textual word embeddings). We consider the scenario where we only have untranscribed speech in a target language. We introduce a number of strategies leveraging a pre-trained multilingual AWE model -- a phonetic AWE model trained on labelled data from multiple languages excluding the target. Our best semantic AWE approach involves clustering word segments using the multilingual AWE model, deriving soft pseudo-word labels from the cluster centroids, and then training a Skipgram-like model on the soft vectors. In an intrinsic word similarity task measuring semantics, this multilingual transfer approach outperforms all previous semantic AWE methods. We also show -- for the first time -- that AWEs can be used for downstream semantic query-by-example search.
In semantic segmentation, adapting a visual system to novel object categories at inference time has always been both valuable and challenging. To enable such generalization, existing methods rely on either providing several support examples as visual cues or class names as textual cues. Through the development is relatively optimistic, these two lines have been studied in isolation, neglecting the complementary intrinsic of low-level visual and high-level language information. In this paper, we define a unified setting termed as open-set semantic segmentation (O3S), which aims to learn seen and unseen semantics from both visual examples and textual names. Our pipeline extracts multi-modal prototypes for segmentation task, by first single modal self-enhancement and aggregation, then multi-modal complementary fusion. To be specific, we aggregate visual features into several tokens as visual prototypes, and enhance the class name with detailed descriptions for textual prototype generation. The two modalities are then fused to generate multi-modal prototypes for final segmentation. On both \pascal and \coco datasets, we conduct extensive experiments to evaluate the framework effectiveness. State-of-the-art results are achieved even on more detailed part-segmentation, Pascal-Animals, by only training on coarse-grained datasets. Thorough ablation studies are performed to dissect each component, both quantitatively and qualitatively.
In this paper, we present EdgeFace, a lightweight and efficient face recognition network inspired by the hybrid architecture of EdgeNeXt. By effectively combining the strengths of both CNN and Transformer models, and a low rank linear layer, EdgeFace achieves excellent face recognition performance optimized for edge devices. The proposed EdgeFace network not only maintains low computational costs and compact storage, but also achieves high face recognition accuracy, making it suitable for deployment on edge devices. Extensive experiments on challenging benchmark face datasets demonstrate the effectiveness and efficiency of EdgeFace in comparison to state-of-the-art lightweight models and deep face recognition models. Our EdgeFace model with 1.77M parameters achieves state of the art results on LFW (99.73%), IJB-B (92.67%), and IJB-C (94.85%), outperforming other efficient models with larger computational complexities. The code to replicate the experiments will be made available publicly.
Diffusion models have demonstrated excellent performance in image generation. Although various few-shot semantic segmentation (FSS) models with different network structures have been proposed, performance improvement has reached a bottleneck. This paper presents the first work to leverage the diffusion model for FSS task, called DifFSS. DifFSS, a novel FSS paradigm, can further improve the performance of the state-of-the-art FSS models by a large margin without modifying their network structure. Specifically, we utilize the powerful generation ability of diffusion models to generate diverse auxiliary support images by using the semantic mask, scribble or soft HED boundary of the support image as control conditions. This generation process simulates the variety within the class of the query image, such as color, texture variation, lighting, $etc$. As a result, FSS models can refer to more diverse support images, yielding more robust representations, thereby achieving a consistent improvement in segmentation performance. Extensive experiments on three publicly available datasets based on existing advanced FSS models demonstrate the effectiveness of the diffusion model for FSS task. Furthermore, we explore in detail the impact of different input settings of the diffusion model on segmentation performance. Hopefully, this completely new paradigm will bring inspiration to the study of FSS task integrated with AI-generated content.
Large language models(LLMs) have shown excellent text generation capabilities, but there is still much space for improvement in accuracy, sometimes with grammatical errors, semantic inaccuracies, and contextual incoherence, which seriously affect the reliability of the models. These problems may originate from the difficulties and limitations encountered in the pattern extraction stage of large language models. How to utilize the generative power of large language models to generate as many possible patterns that help solve problems and find the optimal patterns from them, so as to use patterns to guide large language models to generate good content, has become a current research hotspot. In this paper, we propose a pattern extraction and selection framework, PatternGPT, which generates rich patterns through the extraction ability of large language models and draws on the idea of federation learning, where multiple agents collaborate with each other to generate diverse patterns. High-quality patterns are selected by defining criteria and optimization algorithms to personalize the guidance of the model generation process. PatternGPT has the advantages of generating diverse and useful patterns, extending relevant knowledge, facilitating efficient pattern use and transfer, and optimizing the quality of generated results and user experience, which provides an effective method for optimizing the text generation capability of large language models and is expected to drive further development in the field of intelligent dialogue and content generation. It is expected to promote further development in the field of intelligent dialogue and content generation.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.