亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We characterize the Schr\"odinger bridge problems by a family of Mckean-Vlasov stochastic control problems with no terminal time distribution constraint. In doing so, we use the theory of Hilbert space embeddings of probability measures and then describe the constraint as penalty terms defined by the maximum mean discrepancy in the control problems. A sequence of the probability laws of the state processes resulting from $\epsilon$-optimal controls converges to a unique solution of the Schr\"odinger's problem under mild conditions on given initial and terminal time distributions and an underlying diffusion process. We propose a neural SDE based deep learning algorithm for the Mckean-Vlasov stochastic control problems. Several numerical experiments validate our methods.

相關內容

We introduce a new continual (or lifelong) learning algorithm called LDA-CP&S that performs segmentation tasks without undergoing catastrophic forgetting. The method is applied to two different surface defect segmentation problems that are learned incrementally, i.e. providing data about one type of defect at a time, while still being capable of predicting every defect that was seen previously. Our method creates a defect-related subnetwork for each defect type via iterative pruning and trains a classifier based on linear discriminant analysis (LDA). At the inference stage, we first predict the defect type with LDA and then predict the surface defects using the selected subnetwork. We compare our method with other continual learning methods showing a significant improvement -- mean Intersection over Union better by a factor of two when compared to existing methods on both datasets. Importantly, our approach shows comparable results with joint training when all the training data (all defects) are seen simultaneously

This paper considers the problem of robust iterative Bayesian smoothing in nonlinear state-space models with additive noise using Gaussian approximations. Iterative methods are known to improve smoothed estimates but are not guaranteed to converge, motivating the development of more robust versions of the algorithms. The aim of this article is to present Levenberg-Marquardt (LM) and line-search extensions of the classical iterated extended Kalman smoother (IEKS) as well as the iterated posterior linearisation smoother (IPLS). The IEKS has previously been shown to be equivalent to the Gauss-Newton (GN) method. We derive a similar GN interpretation for the IPLS. Furthermore, we show that an LM extension for both iterative methods can be achieved with a simple modification of the smoothing iterations, enabling algorithms with efficient implementations. Our numerical experiments show the importance of robust methods, in particular for the IEKS-based smoothers. The computationally expensive IPLS-based smoothers are naturally robust but can still benefit from further regularisation.

We introduce a general framework for active learning in regression problems. Our framework extends the standard setup by allowing for general types of data, rather than merely pointwise samples of the target function. This generalization covers many cases of practical interest, such as data acquired in transform domains (e.g., Fourier data), vector-valued data (e.g., gradient-augmented data), data acquired along continuous curves, and, multimodal data (i.e., combinations of different types of measurements). Our framework considers random sampling according to a finite number of sampling measures and arbitrary nonlinear approximation spaces (model classes). We introduce the concept of generalized Christoffel functions and show how these can be used to optimize the sampling measures. We prove that this leads to near-optimal sample complexity in various important cases. This paper focuses on applications in scientific computing, where active learning is often desirable, since it is usually expensive to generate data. We demonstrate the efficacy of our framework for gradient-augmented learning with polynomials, Magnetic Resonance Imaging (MRI) using generative models and adaptive sampling for solving PDEs using Physics-Informed Neural Networks (PINNs).

Feature selection on incomplete datasets is an exceptionally challenging task. Existing methods address this challenge by first employing imputation methods to complete the incomplete data and then conducting feature selection based on the imputed data. Since imputation and feature selection are entirely independent steps, the importance of features cannot be considered during imputation. However, in real-world scenarios or datasets, different features have varying degrees of importance. To address this, we propose a novel incomplete data feature selection framework that considers feature importance. The framework mainly consists of two alternating iterative stages: the M-stage and the W-stage. In the M-stage, missing values are imputed based on a given feature importance vector and multiple initial imputation results. In the W-stage, an improved reliefF algorithm is employed to learn the feature importance vector based on the imputed data. Specifically, the feature importance vector obtained in the current iteration of the W-stage serves as input for the next iteration of the M-stage. Experimental results on both artificially generated and real incomplete datasets demonstrate that the proposed method outperforms other approaches significantly.

Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.

Sample selection models represent a common methodology for correcting bias induced by data missing not at random. It is well known that these models are not empirically identifiable without exclusion restrictions. In other words, some variables predictive of missingness do not affect the outcome model of interest. The drive to establish this requirement often leads to the inclusion of irrelevant variables in the model. A recent proposal uses adaptive LASSO to circumvent this problem, but its performance depends on the so-called covariance assumption, which can be violated in small to moderate samples. Additionally, there are no tools yet for post-selection inference for this model. To address these challenges, we propose two families of spike-and-slab priors to conduct Bayesian variable selection in sample selection models. These prior structures allow for constructing a Gibbs sampler with tractable conditionals, which is scalable to the dimensions of practical interest. We illustrate the performance of the proposed methodology through a simulation study and present a comparison against adaptive LASSO and stepwise selection. We also provide two applications using publicly available real data. An implementation and code to reproduce the results in this paper can be found at //github.com/adam-iqbal/selection-spike-slab

Recent work has proposed solving the k-means clustering problem on quantum computers via the Quantum Approximate Optimization Algorithm (QAOA) and coreset techniques. Although the current method demonstrates the possibility of quantum k-means clustering, it does not ensure high accuracy and consistency across a wide range of datasets. The existing coreset techniques are designed for classical algorithms and there has been no quantum-tailored coreset technique which is designed to boost the accuracy of quantum algorithms. In this work, we propose solving the k-means clustering problem with the variational quantum eigensolver (VQE) and a customised coreset method, the Contour coreset, which has been formulated with specific focus on quantum algorithms. Extensive simulations with synthetic and real-life data demonstrated that our VQE+Contour Coreset approach outperforms existing QAOA+Coreset k-means clustering approaches with higher accuracy and lower standard deviation. Our work has shown that quantum tailored coreset techniques has the potential to significantly boost the performance of quantum algorithms when compared to using generic off-the-shelf coreset techniques.

This paper focuses on the randomized Milstein scheme for approximating solutions to stochastic Volterra integral equations with weakly singular kernels, where the drift coefficients are non-differentiable. An essential component of the error analysis involves the utilization of randomized quadrature rules for stochastic integrals to avoid the Taylor expansion in drift coefficient functions. Finally, we implement the simulation of multiple singular stochastic integral in the numerical experiment by applying the Riemann-Stieltjes integral.

A growing number of scholars and data scientists are conducting randomized experiments to analyze causal relationships in network settings where units influence one another. A dominant methodology for analyzing these network experiments has been design-based, leveraging randomization of treatment assignment as the basis for inference. In this paper, we generalize this design-based approach so that it can be applied to more complex experiments with a variety of causal estimands with different target populations. An important special case of such generalized network experiments is a bipartite network experiment, in which the treatment assignment is randomized among one set of units and the outcome is measured for a separate set of units. We propose a broad class of causal estimands based on stochastic intervention for generalized network experiments. Using a design-based approach, we show how to estimate the proposed causal quantities without bias, and develop conservative variance estimators. We apply our methodology to a randomized experiment in education where a group of selected students in middle schools are eligible for the anti-conflict promotion program, and the program participation is randomized within this group. In particular, our analysis estimates the causal effects of treating each student or his/her close friends, for different target populations in the network. We find that while the treatment improves the overall awareness against conflict among students, it does not significantly reduce the total number of conflicts.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

北京阿比特科技有限公司