亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Code review consists of manual inspection, discussion, and judgment of source code by developers other than the code's author. Due to discussions around competing ideas and group decision-making processes, interpersonal conflicts during code reviews are expected. This study systematically investigates how developers perceive code review conflicts and addresses interpersonal conflicts during code reviews as a theoretical construct. Through the thematic analysis of interviews conducted with 22 developers, we confirm that conflicts during code reviews are commonplace, anticipated and seen as normal by developers. Even though conflicts do happen and carry a negative impact for the review, conflicts-if resolved constructively-can also create value and bring improvement. Moreover, the analysis provided insights on how strongly conflicts during code review and its context (i.e., code, developer, team, organization) are intertwined. Finally, there are aspects specific to code review conflicts that call for the research and application of customized conflict resolution and management techniques, some of which are discussed in this paper. Data and material: //doi.org/10.5281/zenodo.5848794

相關內容

Modern code review is a critical and indispensable practice in a pull-request development paradigm that prevails in Open Source Software (OSS) development. Finding a suitable reviewer in projects with massive participants thus becomes an increasingly challenging task. Many reviewer recommendation approaches (recommenders) have been developed to support this task which apply a similar strategy, i.e. modeling the review history first then followed by predicting/recommending a reviewer based on the model. Apparently, the better the model reflects the reality in review history, the higher recommender's performance we may expect. However, one typical scenario in a pull-request development paradigm, i.e. one Pull-Request (PR) (such as a revision or addition submitted by a contributor) may have multiple reviewers and they may impact each other through publicly posted comments, has not been modeled well in existing recommenders. We adopted the hypergraph technique to model this high-order relationship (i.e. one PR with multiple reviewers herein) and developed a new recommender, namely HGRec, which is evaluated by 12 OSS projects with more than 87K PRs, 680K comments in terms of accuracy and recommendation distribution. The results indicate that HGRec outperforms the state-of-the-art recommenders on recommendation accuracy. Besides, among the top three accurate recommenders, HGRec is more likely to recommend a diversity of reviewers, which can help to relieve the core reviewers' workload congestion issue. Moreover, since HGRec is based on hypergraph, which is a natural and interpretable representation to model review history, it is easy to accommodate more types of entities and realistic relationships in modern code review scenarios. As the first attempt, this study reveals the potentials of hypergraph on advancing the pragmatic solutions for code reviewer recommendation.

We present a new method to combine evidential top-view grid maps estimated based on heterogeneous sensor sources. Dempster's combination rule that is usually applied in this context provides undesired results with highly conflicting inputs. Therefore, we use more advanced evidential reasoning techniques and improve the conflict resolution by modeling the reliability of the evidence sources. We propose a data-driven reliability estimation to optimize the fusion quality using the Kitti-360 dataset. We apply the proposed method to the fusion of LiDAR and stereo camera data and evaluate the results qualitatively and quantitatively. The results demonstrate that our proposed method robustly combines measurements from heterogeneous sensors and successfully resolves sensor conflicts.

Video search has become the main routine for users to discover videos relevant to a text query on large short-video sharing platforms. During training a query-video bi-encoder model using online search logs, we identify a modality bias phenomenon that the video encoder almost entirely relies on text matching, neglecting other modalities of the videos such as vision, audio. This modality imbalanceresults from a) modality gap: the relevance between a query and a video text is much easier to learn as the query is also a piece of text, with the same modality as the video text; b) data bias: most training samples can be solved solely by text matching. Here we share our practices to improve the first retrieval stage including our solution for the modality imbalance issue. We propose MBVR (short for Modality Balanced Video Retrieval) with two key components: manually generated modality-shuffled (MS) samples and a dynamic margin (DM) based on visual relevance. They can encourage the video encoder to pay balanced attentions to each modality. Through extensive experiments on a real world dataset, we show empirically that our method is both effective and efficient in solving modality bias problem. We have also deployed our MBVR in a large video platform and observed statistically significant boost over a highly optimized baseline in an A/B test and manual GSB evaluations.

With the advent of open source software, a veritable treasure trove of previously proprietary software development data was made available. This opened the field of empirical software engineering research to anyone in academia. Data that is mined from software projects, however, requires extensive processing and needs to be handled with utmost care to ensure valid conclusions. Since the software development practices and tools have changed over two decades, we aim to understand the state-of-the-art research workflows and to highlight potential challenges. We employ a systematic literature review by sampling over one thousand papers from leading conferences and by analyzing the 286 most relevant papers from the perspective of data workflows, methodologies, reproducibility, and tools. We found that an important part of the research workflow involving dataset selection was particularly problematic, which raises questions about the generality of the results in existing literature. Furthermore, we found a considerable number of papers provide little or no reproducibility instructions -- a substantial deficiency for a data-intensive field. In fact, 33% of papers provide no information on how their data was retrieved. Based on these findings, we propose ways to address these shortcomings via existing tools and also provide recommendations to improve research workflows and the reproducibility of research.

We propose TubeR: a simple solution for spatio-temporal video action detection. Different from existing methods that depend on either an off-line actor detector or hand-designed actor-positional hypotheses like proposals or anchors, we propose to directly detect an action tubelet in a video by simultaneously performing action localization and recognition from a single representation. TubeR learns a set of tubelet-queries and utilizes a tubelet-attention module to model the dynamic spatio-temporal nature of a video clip, which effectively reinforces the model capacity compared to using actor-positional hypotheses in the spatio-temporal space. For videos containing transitional states or scene changes, we propose a context aware classification head to utilize short-term and long-term context to strengthen action classification, and an action switch regression head for detecting the precise temporal action extent. TubeR directly produces action tubelets with variable lengths and even maintains good results for long video clips. TubeR outperforms the previous state-of-the-art on commonly used action detection datasets AVA, UCF101-24 and JHMDB51-21.

In recent years, large pre-trained transformers have led to substantial gains in performance over traditional retrieval models and feedback approaches. However, these results are primarily based on the MS Marco/TREC Deep Learning Track setup, with its very particular setup, and our understanding of why and how these models work better is fragmented at best. We analyze effective BERT-based cross-encoders versus traditional BM25 ranking for the passage retrieval task where the largest gains have been observed, and investigate two main questions. On the one hand, what is similar? To what extent does the neural ranker already encompass the capacity of traditional rankers? Is the gain in performance due to a better ranking of the same documents (prioritizing precision)? On the other hand, what is different? Can it retrieve effectively documents missed by traditional systems (prioritizing recall)? We discover substantial differences in the notion of relevance identifying strengths and weaknesses of BERT that may inspire research for future improvement. Our results contribute to our understanding of (black-box) neural rankers relative to (well-understood) traditional rankers, help understand the particular experimental setting of MS-Marco-based test collections.

Transformers have dominated the field of natural language processing, and recently impacted the computer vision area. In the field of medical image analysis, Transformers have also been successfully applied to full-stack clinical applications, including image synthesis/reconstruction, registration, segmentation, detection, and diagnosis. Our paper presents both a position paper and a primer, promoting awareness and application of Transformers in the field of medical image analysis. Specifically, we first overview the core concepts of the attention mechanism built into Transformers and other basic components. Second, we give a new taxonomy of various Transformer architectures tailored for medical image applications and discuss their limitations. Within this review, we investigate key challenges revolving around the use of Transformers in different learning paradigms, improving the model efficiency, and their coupling with other techniques. We hope this review can give a comprehensive picture of Transformers to the readers in the field of medical image analysis.

Recommender systems, a pivotal tool to alleviate the information overload problem, aim to predict user's preferred items from millions of candidates by analyzing observed user-item relations. As for tackling the sparsity and cold start problems encountered by recommender systems, uncovering hidden (indirect) user-item relations by employing side information and knowledge to enrich observed information for the recommendation has been proven promising recently; and its performance is largely determined by the scalability of recommendation models in the face of the high complexity and large scale of side information and knowledge. Making great strides towards efficiently utilizing complex and large-scale data, research into graph embedding techniques is a major topic. Equipping recommender systems with graph embedding techniques contributes to outperforming the conventional recommendation implementing directly based on graph topology analysis and has been widely studied these years. This article systematically retrospects graph embedding-based recommendation from embedding techniques for bipartite graphs, general graphs, and knowledge graphs, and proposes a general design pipeline of that. In addition, comparing several representative graph embedding-based recommendation models with the most common-used conventional recommendation models, on simulations, manifests that the conventional models overall outperform the graph embedding-based ones in predicting implicit user-item interactions, revealing the relative weakness of graph embedding-based recommendation in these tasks. To foster future research, this article proposes constructive suggestions on making a trade-off between graph embedding-based recommendation and the conventional recommendation in different tasks as well as some open questions.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.

北京阿比特科技有限公司