The notion of Las Vegas algorithm was introduced by Babai (1979) and may be defined in two ways: * In Babai's original definition, a randomized algorithm is called Las Vegas if it has finitely bounded running time and certifiable random failure. * Alternatively, in a widely accepted definition today, Las Vegas algorithms mean the zero-error randomized algorithms with random running time. The equivalence between the two definitions is straightforward. In particular, by repeatedly running the algorithm until no failure encountered, one can simulate the correct output of a successful running. We show that this can also be achieved for distributed local computation. Specifically, we show that in the LOCAL model, any Las Vegas algorithm that terminates in finite time with locally certifiable failures, can be converted to a zero-error Las Vegas algorithm, at a polylogarithmic cost in the time complexity, such that the resulting algorithm perfectly simulates the output of the original algorithm on the same instance conditioned on that the algorithm successfully returns without failure.
Agents based on Large Language Models (LLMs) are increasingly permeating various domains of human production and life, highlighting the importance of aligning them with human values. The current alignment of AI systems primarily focuses on passively aligning LLMs through human intervention. However, agents possess characteristics like receiving environmental feedback and self-evolution, rendering the LLM alignment methods inadequate. In response, we propose an evolutionary framework for agent evolution and alignment, named EvolutionaryAgent, which transforms agent alignment into a process of evolution and selection under the principle of survival of the fittest. In an environment where social norms continuously evolve, agents better adapted to the current social norms will have a higher probability of survival and proliferation, while those inadequately aligned dwindle over time. Experimental results assessing the agents from multiple perspectives in aligning with social norms demonstrate that EvolutionaryAgent possesses the capability to align progressively better with the evolving social norms while maintaining its proficiency in general tasks. Effectiveness tests conducted on various open and closed-source LLMs as the foundation for agents also prove the applicability of our approach.
A new algorithm for the detection of deepfakes in digital videos is presented. The I-frames were extracted in order to provide faster computation and analysis than approaches described in the literature. To identify the discriminating regions within individual video frames, the entire frame, background, face, eyes, nose, mouth, and face frame were analyzed separately. From the Discrete Cosine Transform (DCT), the Beta components were extracted from the AC coefficients and used as input to standard classifiers. Experimental results show that the eye and mouth regions are those most discriminative and able to determine the nature of the video under analysis.
As Large Language Models (LLMs) continue to advance in their ability to write human-like text, a key challenge remains around their tendency to hallucinate generating content that appears factual but is ungrounded. This issue of hallucination is arguably the biggest hindrance to safely deploying these powerful LLMs into real-world production systems that impact people's lives. The journey toward widespread adoption of LLMs in practical settings heavily relies on addressing and mitigating hallucinations. Unlike traditional AI systems focused on limited tasks, LLMs have been exposed to vast amounts of online text data during training. While this allows them to display impressive language fluency, it also means they are capable of extrapolating information from the biases in training data, misinterpreting ambiguous prompts, or modifying the information to align superficially with the input. This becomes hugely alarming when we rely on language generation capabilities for sensitive applications, such as summarizing medical records, financial analysis reports, etc. This paper presents a comprehensive survey of over 32 techniques developed to mitigate hallucination in LLMs. Notable among these are Retrieval Augmented Generation (Lewis et al, 2021), Knowledge Retrieval (Varshney et al,2023), CoNLI (Lei et al, 2023), and CoVe (Dhuliawala et al, 2023). Furthermore, we introduce a detailed taxonomy categorizing these methods based on various parameters, such as dataset utilization, common tasks, feedback mechanisms, and retriever types. This classification helps distinguish the diverse approaches specifically designed to tackle hallucination issues in LLMs. Additionally, we analyze the challenges and limitations inherent in these techniques, providing a solid foundation for future research in addressing hallucinations and related phenomena within the realm of LLMs.
The Colored Points Traveling Salesman Problem (Colored Points TSP) is introduced in this work as a novel variation of the traditional Traveling Salesman Problem (TSP) in which the set of points is partitioned into multiple classes, each of which is represented by a distinct color (or label). The goal is to find a minimum cost cycle $C$ that visits all the colors and only makes each one appears once. This issue has various applications in the fields of transportation, goods distribution network, postal network, inspection, insurance, banking, etc. By reducing the traditional TSP to it, we can demonstrate that Colored Points TSP is NP-hard. Here, we offer a $\frac{2\pi r}{3}$-approximation algorithm to solve this issue, where $r$ denotes the radius of the points' smallest color-spanning circle. The algorithm has been implemented, executed on random datasets, and compared against the brute force method.
The purpose of this work is to provide some notes on a software implementation for digital filtering via Tustins Bilinear Transform. The first section discusses how to solve for the input and output coefficients by hand using a generalized approach called Horners method. The second section presents some results of this generalized digital filtering approach using the IHMC Open Robotics Software stack and Simulation Construction Set 2. This generalized approach can solve for the digital coefficients for any causal transfer function.
In this work, we introduce SPFormer, a novel Vision Transformer enhanced by superpixel representation. Addressing the limitations of traditional Vision Transformers' fixed-size, non-adaptive patch partitioning, SPFormer employs superpixels that adapt to the image's content. This approach divides the image into irregular, semantically coherent regions, effectively capturing intricate details and applicable at both initial and intermediate feature levels. SPFormer, trainable end-to-end, exhibits superior performance across various benchmarks. Notably, it exhibits significant improvements on the challenging ImageNet benchmark, achieving a 1.4% increase over DeiT-T and 1.1% over DeiT-S respectively. A standout feature of SPFormer is its inherent explainability. The superpixel structure offers a window into the model's internal processes, providing valuable insights that enhance the model's interpretability. This level of clarity significantly improves SPFormer's robustness, particularly in challenging scenarios such as image rotations and occlusions, demonstrating its adaptability and resilience.
With the continued introduction of driverless events to Formula:Society of Automotive Engineers (F:SAE) competitions around the world, teams are investigating all aspects of the autonomous vehicle stack. This paper presents the use of Deep Reinforcement Learning (DRL) and Inverse Reinforcement Learning (IRL) to map locally-observed cone positions to a desired steering angle for race track following. Two state-of-the-art algorithms not previously tested in this context: soft actor critic (SAC) and adversarial inverse reinforcement learning (AIRL), are used to train models in a representative simulation. Three novel reward functions for use by RL algorithms in an autonomous racing context are also discussed. Tests performed in simulation and the real world suggest that both algorithms can successfully train models for local path following. Suggestions for future work are presented to allow these models to scale to a full F:SAE vehicle.
Among the most insidious attacks on Reinforcement Learning (RL) solutions are training-time attacks (TTAs) that create loopholes and backdoors in the learned behaviour. Not limited to a simple disruption, constructive TTAs (C-TTAs) are now available, where the attacker forces a specific, target behaviour upon a training RL agent (victim). However, even state-of-the-art C-TTAs focus on target behaviours that could be naturally adopted by the victim if not for a particular feature of the environment dynamics, which C-TTAs exploit. In this work, we show that a C-TTA is possible even when the target behaviour is un-adoptable due to both environment dynamics as well as non-optimality with respect to the victim objective(s). To find efficient attacks in this context, we develop a specialised flavour of the DDPG algorithm, which we term gammaDDPG, that learns this stronger version of C-TTA. gammaDDPG dynamically alters the attack policy planning horizon based on the victim's current behaviour. This improves effort distribution throughout the attack timeline and reduces the effect of uncertainty the attacker has about the victim. To demonstrate the features of our method and better relate the results to prior research, we borrow a 3D grid domain from a state-of-the-art C-TTA for our experiments. Code is available at "bit.ly/github-rb-gDDPG".
This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.