We introduce ChatSQC, an innovative chatbot system that combines the power of OpenAI's Large Language Models (LLM) with a specific knowledge base in Statistical Quality Control (SQC). Our research focuses on enhancing LLMs using specific SQC references, shedding light on how data preprocessing parameters and LLM selection impact the quality of generated responses. By illustrating this process, we hope to motivate wider community engagement to refine LLM design and output appraisal techniques. We also highlight potential research opportunities within the SQC domain that can be facilitated by leveraging ChatSQC, thereby broadening the application spectrum of SQC. A primary goal of our work is to equip practitioners with a tool capable of generating precise SQC-related responses, thereby democratizing access to advanced SQC knowledge. To continuously improve ChatSQC, we ask the SQC community to provide feedback, highlight potential issues, request additional features, and/or contribute via pull requests through our public GitHub repository. Additionally, the team will continue to explore adding supplementary reference material that would further improve the contextual understanding of the chatbot. Overall, ChatSQC serves as a testament to the transformative potential of AI within SQC, and we hope it will spur further advancements in the integration of AI in this field.
Large Language Models (LLMs), like ChatGPT, are fundamentally tools trained on vast data, reflecting diverse societal impressions. This paper aims to investigate LLMs' self-perceived bias concerning indigeneity when simulating scenarios of indigenous people performing various roles. Through generating and analyzing multiple scenarios, this work offers a unique perspective on how technology perceives and potentially amplifies societal biases related to indigeneity in social computing. The findings offer insights into the broader implications of indigeneity in critical computing.
Our investigation into the Affective Reasoning in Conversation (ARC) task highlights the challenge of causal discrimination. Almost all existing models, including large language models (LLMs), excel at capturing semantic correlations within utterance embeddings but fall short in determining the specific causal relationships. To overcome this limitation, we propose the incorporation of \textit{i.i.d.} noise terms into the conversation process, thereby constructing a structural causal model (SCM). It explores how distinct causal relationships of fitted embeddings can be discerned through independent conditions. To facilitate the implementation of deep learning, we introduce the cogn frameworks to handle unstructured conversation data, and employ an autoencoder architecture to regard the unobservable noise as learnable "implicit causes." Moreover, we curate a synthetic dataset that includes i.i.d. noise. Through comprehensive experiments, we validate the effectiveness and interpretability of our approach. Our code is available in //github.com/Zodiark-ch/mater-of-our-EMNLP2023-paper.
The study explores the capabilities of OpenAI's ChatGPT in solving different types of physics problems. ChatGPT (with GPT-4) was queried to solve a total of 40 problems from a college-level engineering physics course. These problems ranged from well-specified problems, where all data required for solving the problem was provided, to under-specified, real-world problems where not all necessary data were given. Our findings show that ChatGPT could successfully solve 62.5\% of the well-specified problems, but its accuracy drops to 8.3\% for under-specified problems. Analysis of the model's incorrect solutions revealed three distinct failure modes: 1) failure to construct accurate models of the physical world, 2) failure to make reasonable assumptions about missing data, and 3) calculation errors. The study offers implications for how to leverage LLM-augmented instructional materials to enhance STEM education. The insights also contribute to the broader discourse on AI's strengths and limitations, serving both educators aiming to leverage the technology and researchers investigating human-AI collaboration frameworks for problem-solving and decision-making.
We propose FedDrive v2, an extension of the Federated Learning benchmark for Semantic Segmentation in Autonomous Driving. While the first version aims at studying the effect of domain shift of the visual features across clients, in this work, we focus on the distribution skewness of the labels. We propose six new federated scenarios to investigate how label skewness affects the performance of segmentation models and compare it with the effect of domain shift. Finally, we study the impact of using the domain information during testing. Official website: //feddrive.github.io
Recent research in decoding methods for Natural Language Generation (NLG) tasks has shown that MAP decoding is not optimal, because model probabilities do not always align with human preferences. Stronger decoding methods, including Quality Estimation (QE) reranking and Minimum Bayes' Risk (MBR) decoding, have since been proposed to mitigate the model-perplexity-vs-quality mismatch. While these decoding methods achieve state-of-the-art performance, they are prohibitively expensive to compute. In this work, we propose MBR finetuning and QE finetuning which distill the quality gains from these decoding methods at training time, while using an efficient decoding algorithm at inference time. Using the canonical NLG task of Neural Machine Translation (NMT), we show that even with self-training, these finetuning methods significantly outperform the base model. Moreover, when using an external LLM as a teacher model, these finetuning methods outperform finetuning on human-generated references. These findings suggest new ways to leverage monolingual data to achieve improvements in model quality that are on par with, or even exceed, improvements from human-curated data, while maintaining maximum efficiency during decoding.
Purpose: Technology plays a pivotal role in shaping the fate of organizations, both positively and negatively. One of its detrimental consequences is the emergence of "Technostress," a form of destructive stress. This paper investigates the impact of technostress on Perceived Organizational Commitment (POC) through the lens of individual innovation. The objective is to provide valuable insights for organizational managers, enabling them to effectively mitigate the adverse effects of technostress within their teams. Design/Methodology/Approach: This study utilized a questionnaire survey conducted within an Engineering Consulting Company in Iran, with 147 individuals participating, selected according to Morgan's table. Findings: The research findings revealed three crucial insights: (1) Technostress significantly and negatively influences both POC and individual innovation. (2) Individual innovation positively and significantly impacts POC. (3) Individual innovation acts as a mediator between technostress and POC, alleviating the negative impact of technostress on organizational commitment. Research Implications: The study underscores the importance for managers to proactively address technostress-related challenges and promote individual innovation within their organizations. These efforts are vital in enhancing organizational commitment among employees. Originality/Value: This research makes a significant contribution to the field by illuminating the mediating role of individual innovation in the relationship between technostress and perceived organizational commitment. Given the close association of employees in engineering organizations with technology, this study sheds light on the specific challenges faced by this sector, thereby enhancing our understanding of technostress effects in the workplace.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.