亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper tackles the challenging task of evaluating socially situated conversational robots and presents a novel objective evaluation approach that relies on multimodal user behaviors. In this study, our main focus is on assessing the human-likeness of the robot as the primary evaluation metric. While previous research often relied on subjective evaluations from users, our approach aims to evaluate the robot's human-likeness based on observable user behaviors indirectly, thus enhancing objectivity and reproducibility. To begin, we created an annotated dataset of human-likeness scores, utilizing user behaviors found in an attentive listening dialogue corpus. We then conducted an analysis to determine the correlation between multimodal user behaviors and human-likeness scores, demonstrating the feasibility of our proposed behavior-based evaluation method.

相關內容

Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at //github.com/Spico197/Mirror .

While much work has been done recently in the realm of model-based control of soft robots and soft-rigid hybrids, most works examine robots that have an inherently serial structure. While these systems have been prevalent in the literature, there is an increasing trend toward designing soft-rigid hybrids with intrinsically coupled elasticity between various degrees of freedom. In this work, we seek to address the issues of modeling and controlling such structures, particularly when underactuated. We introduce several simple models for elastic coupling, typical of those seen in these systems. We then propose a controller that compensates for the elasticity, and we prove its stability with Lyapunov methods without relying on the elastic dominance assumption. This controller is applicable to the general class of underactuated soft robots. After evaluating the controller in simulated cases, we then develop a simple hardware platform to evaluate both the models and the controller. Finally, using the hardware, we demonstrate a novel use case for underactuated, elastically coupled systems in "sensorless" force control.

Overparameterized models have proven to be powerful tools for solving various machine learning tasks. However, overparameterization often leads to a substantial increase in computational and memory costs, which in turn requires extensive resources to train. In this work, we aim to reduce this complexity by studying the learning dynamics of overparameterized deep networks. By extensively studying its learning dynamics, we unveil that the weight matrices of various architectures exhibit a low-dimensional structure. This finding implies that we can compress the networks by reducing the training to a small subspace. We take a step in developing a principled approach for compressing deep networks by studying deep linear models. We demonstrate that the principal components of deep linear models are fitted incrementally but within a small subspace, and use these insights to compress deep linear networks by decreasing the width of its intermediate layers. Remarkably, we observe that with a particular choice of initialization, the compressed network converges faster than the original network, consistently yielding smaller recovery errors throughout all iterations of gradient descent. We substantiate this observation by developing a theory focused on the deep matrix factorization problem, and by conducting empirical evaluations on deep matrix sensing. Finally, we demonstrate how our compressed model can enhance the utility of deep nonlinear models. Overall, we observe that our compression technique accelerates the training process by more than 2x, without compromising model quality.

This paper aims to develop a framework that enables a robot to execute tasks based on visual information, in response to natural language instructions for Fetch-and-Carry with Object Grounding (FCOG) tasks. Although there have been many frameworks, they usually rely on manually given instruction sentences. Therefore, evaluations have only been conducted with fixed tasks. Furthermore, many multimodal language understanding models for the benchmarks only consider discrete actions. To address the limitations, we propose a framework for the full automation of the generation, execution, and evaluation of FCOG tasks. In addition, we introduce an approach to solving the FCOG tasks by dividing them into four distinct subtasks.

This paper implements and analyzes multiple networks with the goal of understanding their suitability for edge device applications such as X-ray threat detection. In this study, we use the state-of-the-art YOLO object detection model to solve this task of detecting threats in security baggage screening images. We designed and studied three models - Tiny YOLO, QCFS Tiny YOLO, and SNN Tiny YOLO. We utilize an alternative activation function calculated to have zero expected conversion error with the activation of a spiking activation function in our Tiny YOLOv7 model. This \textit{QCFS} version of the Tiny YOLO replicates the activation function from ultra-low latency and high-efficiency SNN architecture. It achieves state-of-the-art performance on CLCXray, an open-source X-ray threat Detection dataset. In addition, we also study the behavior of a Spiking Tiny YOLO on the same X-ray threat Detection dataset.

This paper presents a novel method for learning reward functions for robotic motions by harnessing the power of a CLIP-based model. Traditional reward function design often hinges on manual feature engineering, which can struggle to generalize across an array of tasks. Our approach circumvents this challenge by capitalizing on CLIP's capability to process both state features and image inputs effectively. Given a pair of consecutive observations, our model excels in identifying the motion executed between them. We showcase results spanning various robotic activities, such as directing a gripper to a designated target and adjusting the position of a cube. Through experimental evaluations, we underline the proficiency of our method in precisely deducing motion and its promise to enhance reinforcement learning training in the realm of robotics.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司