亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The group synchronization problem is to estimate unknown group elements at the vertices of a graph when given a set of possibly noisy observations of group differences at the edges. We consider the group synchronization problem on finite graphs with size tending to infinity, and we focus on the question of whether the true edge differences can be exactly recovered from the observations (i.e., strong recovery). We prove two main results, one positive and one negative. In the positive direction, we prove that for a sequence of synchronization problems containing the complete digraph along with a relatively well behaved prior distribution and observation kernel, with high probability we can recover the correct edge labeling. Our negative result provides conditions on a sequence of sparse graphs under which it is impossible to recover the correct edge labeling with high probability.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: ·
2022 年 1 月 12 日

A $(t,n)$-threshold signature scheme enables distributed signing among $n$ players such that any subset of size at least $t$ can sign, whereas any subset with fewer players cannot. The goal is to produce threshold digital signatures that are compatible with an existing centralized signature scheme. Starting from the threshold scheme for the ECDSA signature due to Battagliola et al., we present the first protocol that supports EdDSA multi-party signatures with an offline participant during the key-generation phase, without relying on a trusted third party. Under standard assumptions we prove our scheme secure against adaptive malicious adversaries. Furthermore we show how our security notion can be strengthen when considering a rushing adversary. We discuss the resiliency of the recovery in the presence of a malicious party. Using a classical game-based argument, we prove that if there is an adversary capable of forging the scheme with non-negligible probability, then we can build a forger for the centralized EdDSA scheme with non-negligible probability.

We present a new FPTAS for the Subset Sum Ratio problem, which, given a set of integers, asks for two disjoint subsets such that the ratio of their sums is as close to $1$ as possible. Our scheme makes use of exact and approximate algorithms for the closely related Subset Sum problem, hence any progress over those -- such as the recent improvement due to Bringmann and Nakos [SODA 2021] -- carries over to our FPTAS. Depending on the relationship between the size of the input set $n$ and the error margin $\varepsilon$, we improve upon the best currently known algorithm of Melissinos and Pagourtzis [COCOON 2018] of complexity $O(n^4 / \varepsilon)$. In particular, the exponent of $n$ in our proposed scheme may decrease down to $2$, depending on the Subset Sum algorithm used. Furthermore, while the aforementioned state of the art complexity, expressed in the form $O((n + 1 / \varepsilon)^c)$, has constant $c = 5$, our results establish that $c < 5$.

In graph analysis, a classic task consists in computing similarity measures between (groups of) nodes. In latent space random graphs, nodes are associated to unknown latent variables. One may then seek to compute distances directly in the latent space, using only the graph structure. In this paper, we show that it is possible to consistently estimate entropic-regularized Optimal Transport (OT) distances between groups of nodes in the latent space. We provide a general stability result for entropic OT with respect to perturbations of the cost matrix. We then apply it to several examples of random graphs, such as graphons or $\epsilon$-graphs on manifolds. Along the way, we prove new concentration results for the so-called Universal Singular Value Thresholding estimator, and for the estimation of geodesic distances on a manifold.

We show that any $n$-bit string can be recovered with high probability from $\exp(\widetilde{O}(n^{1/5}))$ independent random subsequences.

In this paper, we present two variations of an algorithm for signal reconstruction from one-bit or two-bit noisy observations of the discrete Fourier transform (DFT). The one-bit observations of the DFT correspond to the sign of its real part, whereas, the two-bit observations of the DFT correspond to the signs of both the real and imaginary parts of the DFT. We focus on images for analysis and simulations, thus using the sign of the 2D-DFT. This choice of the class of signals is inspired by previous works on this problem. For our algorithm, we show that the expected mean squared error (MSE) in signal reconstruction is asymptotically proportional to the inverse of the sampling rate. The samples are affected by additive zero-mean noise of known distribution. We solve this signal estimation problem by designing an algorithm that uses contraction mapping, based on the Banach fixed point theorem. Numerical tests with four benchmark images are provided to show the effectiveness of our algorithm. Various metrics for image reconstruction quality assessment such as PSNR, SSIM, ESSIM, and MS-SSIM are employed. On all four benchmark images, our algorithm outperforms the state-of-the-art in all of these metrics by a significant margin.

Consider a random graph process with $n$ vertices corresponding to points $v_{i} \sim {Unif}[0,1]$ embedded randomly in the interval, and where edges are inserted between $v_{i}, v_{j}$ independently with probability given by the graphon $w(v_{i},v_{j}) \in [0,1]$. Following Chuangpishit et al. (2015), we call a graphon $w$ diagonally increasing if, for each $x$, $w(x,y)$ decreases as $y$ moves away from $x$. We call a permutation $\sigma \in S_{n}$ an ordering of these vertices if $v_{\sigma(i)} < v_{\sigma(j)}$ for all $i < j$, and ask: how can we accurately estimate $\sigma$ from an observed graph? We present a randomized algorithm with output $\hat{\sigma}$ that, for a large class of graphons, achieves error $\max_{1 \leq i \leq n} | \sigma(i) - \hat{\sigma}(i)| = O^{*}(\sqrt{n})$ with high probability; we also show that this is the best-possible convergence rate for a large class of algorithms and proof strategies. Under an additional assumption that is satisfied by some popular graphon models, we break this "barrier" at $\sqrt{n}$ and obtain the vastly better rate $O^{*}(n^{\epsilon})$ for any $\epsilon > 0$. These improved seriation bounds can be combined with previous work to give more efficient and accurate algorithms for related tasks, including: estimating diagonally increasing graphons, and testing whether a graphon is diagonally increasing.

The von Neumann graph entropy is a measure of graph complexity based on the Laplacian spectrum. It has recently found applications in various learning tasks driven by networked data. However, it is computational demanding and hard to interpret using simple structural patterns. Due to the close relation between Lapalcian spectrum and degree sequence, we conjecture that the structural information, defined as the Shannon entropy of the normalized degree sequence, might be a good approximation of the von Neumann graph entropy that is both scalable and interpretable. In this work, we thereby study the difference between the structural information and von Neumann graph entropy named as {\em entropy gap}. Based on the knowledge that the degree sequence is majorized by the Laplacian spectrum, we for the first time prove the entropy gap is between $0$ and $\log_2 e$ in any undirected unweighted graphs. Consequently we certify that the structural information is a good approximation of the von Neumann graph entropy that achieves provable accuracy, scalability, and interpretability simultaneously. This approximation is further applied to two entropy-related tasks: network design and graph similarity measure, where novel graph similarity measure and fast algorithms are proposed. Our experimental results on graphs of various scales and types show that the very small entropy gap readily applies to a wide range of graphs and weighted graphs. As an approximation of the von Neumann graph entropy, the structural information is the only one that achieves both high efficiency and high accuracy among the prominent methods. It is at least two orders of magnitude faster than SLaQ with comparable accuracy. Our structural information based methods also exhibit superior performance in two entropy-related tasks.

Flux reconstruction provides a framework for solving partial differential equations in which functions are discontinuously approximated within elements. Typically, this is done by using polynomials. Here, the use of radial basis functions as a methods for underlying functional approximation is explored in one dimension, using both analytical and numerical methods. At some mesh densities, RBF flux reconstruction is found to outperform polynomial flux reconstruction, and this range of mesh densities becomes finer as the width of the RBF interpolator is increased. A method which avoids the poor conditioning of flat RBFs is used to test a wide range of basis shapes, and at very small values, the polynomial behaviour is recovered. Changing the location of the solution points is found to have an effect similar to that in polynomial FR, with the Gauss--Legendre points being the most effective. Altering the location of the functional centres is found to have only a very small effect on performance. Similar behaviours are determined for the non-linear Burgers' equation.

In Defective Coloring we are given a graph $G$ and two integers $\chi_d$, $\Delta^*$ and are asked if we can $\chi_d$-color $G$ so that the maximum degree induced by any color class is at most $\Delta^*$. We show that this natural generalization of Coloring is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one of the two parameters $\chi_d$, $\Delta^*$ is set to the smallest possible fixed value that does not trivialize the problem ($\chi_d = 2$ or $\Delta^* = 1$). Together with a simple treewidth-based DP algorithm this completely determines the complexity of the problem also on chordal graphs. We then consider the case of cographs and show that, somewhat surprisingly, Defective Coloring turns out to be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing that Defective Coloring is in P for cographs if either $\chi_d$ or $\Delta^*$ is fixed; that it is in P for trivially perfect graphs; and that it admits a sub-exponential time algorithm for cographs when both $\chi_d$ and $\Delta^*$ are unbounded.

Named entity recognition (NER) and entity linking (EL) are two fundamentally related tasks, since in order to perform EL, first the mentions to entities have to be detected. However, most entity linking approaches disregard the mention detection part, assuming that the correct mentions have been previously detected. In this paper, we perform joint learning of NER and EL to leverage their relatedness and obtain a more robust and generalisable system. For that, we introduce a model inspired by the Stack-LSTM approach (Dyer et al., 2015). We observe that, in fact, doing multi-task learning of NER and EL improves the performance in both tasks when comparing with models trained with individual objectives. Furthermore, we achieve results competitive with the state-of-the-art in both NER and EL.

北京阿比特科技有限公司