Sufficiently capable models could subvert human oversight and decision-making in important contexts. For example, in the context of AI development, models could covertly sabotage efforts to evaluate their own dangerous capabilities, to monitor their behavior, or to make decisions about their deployment. We refer to this family of abilities as sabotage capabilities. We develop a set of related threat models and evaluations. These evaluations are designed to provide evidence that a given model, operating under a given set of mitigations, could not successfully sabotage a frontier model developer or other large organization's activities in any of these ways. We demonstrate these evaluations on Anthropic's Claude 3 Opus and Claude 3.5 Sonnet models. Our results suggest that for these models, minimal mitigations are currently sufficient to address sabotage risks, but that more realistic evaluations and stronger mitigations seem likely to be necessary soon as capabilities improve. We also survey related evaluations we tried and abandoned. Finally, we discuss the advantages of mitigation-aware capability evaluations, and of simulating large-scale deployments using small-scale statistics.
Score distillation of 2D diffusion models has proven to be a powerful mechanism to guide 3D optimization, for example enabling text-based 3D generation or single-view reconstruction. A common limitation of existing score distillation formulations, however, is that the outputs of the (mode-seeking) optimization are limited in diversity despite the underlying diffusion model being capable of generating diverse samples. In this work, inspired by the sampling process in denoising diffusion, we propose a score formulation that guides the optimization to follow generation paths defined by random initial seeds, thus ensuring diversity. We then present an approximation to adopt this formulation for scenarios where the optimization may not precisely follow the generation paths (e.g. a 3D representation whose renderings evolve in a co-dependent manner). We showcase the applications of our `Diverse Score Distillation' (DSD) formulation across tasks such as 2D optimization, text-based 3D inference, and single-view reconstruction. We also empirically validate DSD against prior score distillation formulations and show that it significantly improves sample diversity while preserving fidelity.
We propose to transfer representational knowledge from multiple sources to a target noisy matrix completion task by aggregating singular subspaces information. Under our representational similarity framework, we first integrate linear representation information by solving a two-way principal component analysis problem based on a properly debiased matrix-valued dataset. After acquiring better column and row representation estimators from the sources, the original high-dimensional target matrix completion problem is then transformed into a low-dimensional linear regression, of which the statistical efficiency is guaranteed. A variety of extensional arguments, including post-transfer statistical inference and robustness against negative transfer, are also discussed alongside. Finally, extensive simulation results and a number of real data cases are reported to support our claims.
The flexibility and the variety of computing resources offered by the cloud make it particularly attractive for executing user workloads. However, IaaS cloud environments pose non-trivial challenges in the case of workflow scheduling under deadlines and monetary cost constraints. Indeed, given the typical uncertain performance behavior of cloud resources, scheduling algorithms that assume deterministic execution times may fail, thus requiring probabilistic approaches. However, existing probabilistic algorithms are computationally expensive, mainly due to the greater complexity of the workflow scheduling problem in its probabilistic form, and they hardily scale with the size of the problem instance. In this article, we propose EPOSS, a novel workflow scheduling algorithm for IaaS cloud environments based on a probabilistic formulation. Our solution blends together the low execution latency of state-of-the-art scheduling algorithms designed for the case of deterministic execution times and the capability to enforce probabilistic constraints.Designed with computational efficiency in mind, EPOSS achieves one to two orders lower execution times in comparison with existing probabilistic schedulers. Furthermore, it ensures good scaling with respect to workflow size and number of heterogeneous virtual machine types offered by the IaaS cloud environment. We evaluated the benefits of our algorithm via an experimental comparison over a variety of workloads and characteristics of IaaS cloud environments.
Best subset selection is considered the `gold standard' for many sparse learning problems. A variety of optimization techniques have been proposed to attack this non-smooth non-convex problem. In this paper, we investigate the dual forms of a family of $\ell_0$-regularized problems. An efficient primal-dual algorithm is developed based on the primal and dual problem structures. By leveraging the dual range estimation along with the incremental strategy, our algorithm potentially reduces redundant computation and improves the solutions of best subset selection. Theoretical analysis and experiments on synthetic and real-world datasets validate the efficiency and statistical properties of the proposed solutions.
We visit and slightly modify the proof of Hanson-Wright inequality (HW inequality) for concentration of Gaussian quadratic chaos where we are able to tighten the bound by increasing the absolute constant in its formulation from its largest currently known value of 0.125 to at least 0.145 in the symmetric case. We also present a sharper version of the so-called Laurent-Massart inequality (LM inequality) through which we are able to increase the absolute constant in HW inequality from its largest currently available value of 0.134 due to LM inequality itself to at least 0.152 in the positive-semidefinite case. Generalizing HW inequality in the symmetric case, we derive a sequence of concentration bounds for Gaussian quadratic chaos indexed over m = 1, 2, 3,... that involves the Schatten norms of the underlying matrix. The case m = 1 reduces to HW inequality. These bounds exhibit a phase transition in behaviour in the sense that m = 1 results in the tightest bound if the deviation is smaller than a critical threshold and the bounds keep getting tighter as the index m increases when the deviation is larger than the aforementioned threshold. Finally, we derive a concentration bound that is asymptotically tighter than HW inequality both in the small and large deviation regimes.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.