亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The issue of word sense ambiguity poses a significant challenge in natural language processing due to the scarcity of annotated data to feed machine learning models to face the challenge. Therefore, unsupervised word sense disambiguation methods have been developed to overcome that challenge without relying on annotated data. This research proposes a new context-aware approach to unsupervised word sense disambiguation, which provides a flexible mechanism for incorporating contextual information into the similarity measurement process. We experiment with a popular benchmark dataset to evaluate the proposed strategy and compare its performance with state-of-the-art unsupervised word sense disambiguation techniques. The experimental results indicate that our approach substantially enhances disambiguation accuracy and surpasses the performance of several existing techniques. Our findings underscore the significance of integrating contextual information in semantic similarity measurements to manage word sense ambiguity in unsupervised scenarios effectively.

相關內容

Machine learning applications cover a wide range of predictive tasks in which tabular datasets play a significant role. However, although they often address similar problems, tabular datasets are typically treated as standalone tasks. The possibilities of using previously solved problems are limited due to the lack of structured contextual information about their features and the lack of understanding of the relations between them. To overcome this limitation, we propose a new approach called Semantic Feature Net (SeFNet), capturing the semantic meaning of the analyzed tabular features. By leveraging existing ontologies and domain knowledge, SeFNet opens up new opportunities for sharing insights between diverse predictive tasks. One such opportunity is the Dataset Ontology-based Semantic Similarity (DOSS) measure, which quantifies the similarity between datasets using relations across their features. In this paper, we present an example of SeFNet prepared for a collection of predictive tasks in healthcare, with the features' relations derived from the SNOMED-CT ontology. The proposed SeFNet framework and the accompanying DOSS measure address the issue of limited contextual information in tabular datasets. By incorporating domain knowledge and establishing semantic relations between features, we enhance the potential for meta-learning and enable valuable insights to be shared across different predictive tasks.

Document-level relation extraction (DocRE) attracts more research interest recently. While models achieve consistent performance gains in DocRE, their underlying decision rules are still understudied: Do they make the right predictions according to rationales? In this paper, we take the first step toward answering this question and then introduce a new perspective on comprehensively evaluating a model. Specifically, we first conduct annotations to provide the rationales considered by humans in DocRE. Then, we conduct investigations and reveal the fact that: In contrast to humans, the representative state-of-the-art (SOTA) models in DocRE exhibit different decision rules. Through our proposed RE-specific attacks, we next demonstrate that the significant discrepancy in decision rules between models and humans severely damages the robustness of models and renders them inapplicable to real-world RE scenarios. After that, we introduce mean average precision (MAP) to evaluate the understanding and reasoning capabilities of models. According to the extensive experimental results, we finally appeal to future work to consider evaluating both performance and the understanding ability of models for the development of their applications. We make our annotations and code publicly available.

Large pretrained language models (LMs) have shown impressive In-Context Learning (ICL) ability, where the model learns to do an unseen task via a prompt consisting of input-output examples as the demonstration, without any parameter updates. The performance of ICL is highly dominated by the quality of the selected in-context examples. However, previous selection methods are mostly based on simple heuristics, leading to sub-optimal performance. In this work, we formulate in-context example selection as a subset selection problem. We propose CEIL (Compositional Exemplars for In-context Learning), which is instantiated by Determinantal Point Processes (DPPs) to model the interaction between the given input and in-context examples, and optimized through a carefully-designed contrastive learning objective to obtain preference from LMs. We validate CEIL on 12 classification and generation datasets from 7 distinct NLP tasks, including sentiment analysis, paraphrase detection, natural language inference, commonsense reasoning, open-domain question answering, code generation, and semantic parsing. Extensive experiments demonstrate not only the state-of-the-art performance but also the transferability and compositionality of CEIL, shedding new light on effective and efficient in-context learning. Our code is released at //github.com/HKUNLP/icl-ceil.

Discourse analysis is an important task because it models intrinsic semantic structures between sentences in a document. Discourse markers are natural representations of discourse in our daily language. One challenge is that the markers as well as pre-defined and human-labeled discourse relations can be ambiguous when describing the semantics between sentences. We believe that a better approach is to use a contextual-dependent distribution over the markers to express discourse information. In this work, we propose to learn a Distributed Marker Representation (DMR) by utilizing the (potentially) unlimited discourse marker data with a latent discourse sense, thereby bridging markers with sentence pairs. Such representations can be learned automatically from data without supervision, and in turn provide insights into the data itself. Experiments show the SOTA performance of our DMR on the implicit discourse relation recognition task and strong interpretability. Our method also offers a valuable tool to understand complex ambiguity and entanglement among discourse markers and manually defined discourse relations.

Semantic similarity analysis and modeling is a fundamentally acclaimed task in many pioneering applications of natural language processing today. Owing to the sensation of sequential pattern recognition, many neural networks like RNNs and LSTMs have achieved satisfactory results in semantic similarity modeling. However, these solutions are considered inefficient due to their inability to process information in a non-sequential manner, thus leading to the improper extraction of context. Transformers function as the state-of-the-art architecture due to their advantages like non-sequential data processing and self-attention. In this paper, we perform semantic similarity analysis and modeling on the U.S Patent Phrase to Phrase Matching Dataset using both traditional and transformer-based techniques. We experiment upon four different variants of the Decoding Enhanced BERT - DeBERTa and enhance its performance by performing K-Fold Cross-Validation. The experimental results demonstrate our methodology's enhanced performance compared to traditional techniques, with an average Pearson correlation score of 0.79.

Relation Extraction (RE) is a task that identifies relationships between entities in a text, enabling the acquisition of relational facts and bridging the gap between natural language and structured knowledge. However, current RE models often rely on small datasets with low coverage of relation types, particularly when working with languages other than English. In this paper, we address the above issue and provide two new resources that enable the training and evaluation of multilingual RE systems. First, we present SRED$^{\rm FM}$, an automatically annotated dataset covering 18 languages, 400 relation types, 13 entity types, totaling more than 40 million triplet instances. Second, we propose RED$^{\rm FM}$, a smaller, human-revised dataset for seven languages that allows for the evaluation of multilingual RE systems. To demonstrate the utility of these novel datasets, we experiment with the first end-to-end multilingual RE model, mREBEL, that extracts triplets, including entity types, in multiple languages. We release our resources and model checkpoints at //www.github.com/babelscape/rebel

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

Contextual word representations derived from pre-trained bidirectional language models (biLMs) have recently been shown to provide significant improvements to the state of the art for a wide range of NLP tasks. However, many questions remain as to how and why these models are so effective. In this paper, we present a detailed empirical study of how the choice of neural architecture (e.g. LSTM, CNN, or self attention) influences both end task accuracy and qualitative properties of the representations that are learned. We show there is a tradeoff between speed and accuracy, but all architectures learn high quality contextual representations that outperform word embeddings for four challenging NLP tasks. Additionally, all architectures learn representations that vary with network depth, from exclusively morphological based at the word embedding layer through local syntax based in the lower contextual layers to longer range semantics such coreference at the upper layers. Together, these results suggest that unsupervised biLMs, independent of architecture, are learning much more about the structure of language than previously appreciated.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司