亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated Learning (FL) trains a black-box and high-dimensional model among different clients by exchanging parameters instead of direct data sharing, which mitigates the privacy leak incurred by machine learning. However, FL still suffers from membership inference attacks (MIA) or data reconstruction attacks (DRA). In particular, an attacker can extract the information from local datasets by constructing DRA, which cannot be effectively throttled by existing techniques, e.g., Differential Privacy (DP). In this paper, we aim to ensure a strong privacy guarantee for FL under DRA. We prove that reconstruction errors under DRA are constrained by the information acquired by an attacker, which means that constraining the transmitted information can effectively throttle DRA. To quantify the information leakage incurred by FL, we establish a channel model, which depends on the upper bound of joint mutual information between the local dataset and multiple transmitted parameters. Moreover, the channel model indicates that the transmitted information can be constrained through data space operation, which can improve training efficiency and the model accuracy under constrained information. According to the channel model, we propose algorithms to constrain the information transmitted in a single round of local training. With a limited number of training rounds, the algorithms ensure that the total amount of transmitted information is limited. Furthermore, our channel model can be applied to various privacy-enhancing techniques (such as DP) to enhance privacy guarantees against DRA. Extensive experiments with real-world datasets validate the effectiveness of our methods.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · INFORMS · 設計 · MoDELS · 可交換的 ·
2024 年 4 月 15 日

Vision Transformer (ViT) has shown high potential in video recognition, owing to its flexible design, adaptable self-attention mechanisms, and the efficacy of masked pre-training. Yet, it remains unclear how to adapt these pre-trained short-term ViTs for temporal action detection (TAD) in untrimmed videos. The existing works treat them as off-the-shelf feature extractors for each short-trimmed snippet without capturing the fine-grained relation among different snippets in a broader temporal context. To mitigate this issue, this paper focuses on designing a new mechanism for adapting these pre-trained ViT models as a unified long-form video transformer to fully unleash its modeling power in capturing inter-snippet relation, while still keeping low computation overhead and memory consumption for efficient TAD. To this end, we design effective cross-snippet propagation modules to gradually exchange short-term video information among different snippets from two levels. For inner-backbone information propagation, we introduce a cross-snippet propagation strategy to enable multi-snippet temporal feature interaction inside the backbone.For post-backbone information propagation, we propose temporal transformer layers for further clip-level modeling. With the plain ViT-B pre-trained with VideoMAE, our end-to-end temporal action detector (ViT-TAD) yields a very competitive performance to previous temporal action detectors, riching up to 69.5 average mAP on THUMOS14, 37.40 average mAP on ActivityNet-1.3 and 17.20 average mAP on FineAction.

Computer vision models trained on Google Street View images can create material cadastres. However, current approaches need manually annotated datasets that are difficult to obtain and often have class imbalance. To address these challenges, this paper fine-tuned a Swin Transformer model on a synthetic dataset generated with DALL-E and compared the performance to a similar manually annotated dataset. Although manual annotation remains the gold standard, the synthetic dataset performance demonstrates a reasonable alternative. The findings will ease annotation needed to develop material cadastres, offering architects insights into opportunities for material reuse, thus contributing to the reduction of demolition waste.

Offline Reinforcement Learning (RL) faces distributional shift and unreliable value estimation, especially for out-of-distribution (OOD) actions. To address this, existing uncertainty-based methods penalize the value function with uncertainty quantification and demand numerous ensemble networks, posing computational challenges and suboptimal outcomes. In this paper, we introduce a novel strategy employing diverse randomized value functions to estimate the posterior distribution of $Q$-values. It provides robust uncertainty quantification and estimates lower confidence bounds (LCB) of $Q$-values. By applying moderate value penalties for OOD actions, our method fosters a provably pessimistic approach. We also emphasize on diversity within randomized value functions and enhance efficiency by introducing a diversity regularization method, reducing the requisite number of networks. These modules lead to reliable value estimation and efficient policy learning from offline data. Theoretical analysis shows that our method recovers the provably efficient LCB-penalty under linear MDP assumptions. Extensive empirical results also demonstrate that our proposed method significantly outperforms baseline methods in terms of performance and parametric efficiency.

Recently, a surge of 3D style transfer methods has been proposed that leverage the scene reconstruction power of a pre-trained neural radiance field (NeRF). To successfully stylize a scene this way, one must first reconstruct a photo-realistic radiance field from collected images of the scene. However, when only sparse input views are available, pre-trained few-shot NeRFs often suffer from high-frequency artifacts, which are generated as a by-product of high-frequency details for improving reconstruction quality. Is it possible to generate more faithful stylized scenes from sparse inputs by directly optimizing encoding-based scene representation with target style? In this paper, we consider the stylization of sparse-view scenes in terms of disentangling content semantics and style textures. We propose a coarse-to-fine sparse-view scene stylization framework, where a novel hierarchical encoding-based neural representation is designed to generate high-quality stylized scenes directly from implicit scene representations. We also propose a new optimization strategy with content strength annealing to achieve realistic stylization and better content preservation. Extensive experiments demonstrate that our method can achieve high-quality stylization of sparse-view scenes and outperforms fine-tuning-based baselines in terms of stylization quality and efficiency.

Jailbreak attacks on Language Model Models (LLMs) entail crafting prompts aimed at exploiting the models to generate malicious content. Existing jailbreak attacks can successfully deceive the LLMs, however they cannot deceive the human. This paper proposes a new type of jailbreak attacks which can deceive both the LLMs and human (i.e., security analyst). The key insight of our idea is borrowed from the social psychology - that is human are easily deceived if the lie is hidden in truth. Based on this insight, we proposed the logic-chain injection attacks to inject malicious intention into benign truth. Logic-chain injection attack firstly dissembles its malicious target into a chain of benign narrations, and then distribute narrations into a related benign article, with undoubted facts. In this way, newly generate prompt cannot only deceive the LLMs, but also deceive human.

Large Language Models (LLMs) like gpt-3.5-turbo and claude-instant-1.2 have become instrumental in interpreting and executing semantic-based tasks. Unfortunately, these models' inherent biases, akin to human cognitive biases, adversely affect their performance. Particularly affected is object selection from lists; a fundamental operation in digital navigation and decision-making. This research critically examines these biases and quantifies the effects on a representative list selection task. To explore these biases, we conducted a series of controlled experiments, manipulating temperature, list length, object identity, object type, prompt complexity, and model. This enabled us to isolate and measure the influence of the biases on selection behavior. Our findings show that bias structure is strongly dependent on the model, with object type modulating the magnitude of the effect. With a strong primacy effect, causing the first objects in a list to be disproportionately represented in outputs. Furthermore the usage of guard rails, a prompt engineering method of ensuring a response structure, can increase bias and decrease instruction adherence when combined with a selection task. The bias is ablated when the guard rail step is separated from the list sampling step, lowering the complexity of each individual task. The implications of this research are two-fold, practically providing a guide for designing unbiased LLM applications and theoretically suggesting that LLMs experience a form of cognitive load compensated for by increasing bias.

Imitation Learning (IL), also referred to as Learning from Demonstration (LfD), holds significant promise for capturing expert motor skills through efficient imitation, facilitating adept navigation of complex scenarios. A persistent challenge in IL lies in extending generalization from historical demonstrations, enabling the acquisition of new skills without re-teaching. Dynamical system-based IL (DSIL) emerges as a significant subset of IL methodologies, offering the ability to learn trajectories via movement primitives and policy learning based on experiential abstraction. This paper emphasizes the fusion of theoretical paradigms, integrating control theory principles inherent in dynamical systems into IL. This integration notably enhances robustness, adaptability, and convergence in the face of novel scenarios. This survey aims to present a comprehensive overview of DSIL methods, spanning from classical approaches to recent advanced approaches. We categorize DSIL into autonomous dynamical systems and non-autonomous dynamical systems, surveying traditional IL methods with low-dimensional input and advanced deep IL methods with high-dimensional input. Additionally, we present and analyze three main stability methods for IL: Lyapunov stability, contraction theory, and diffeomorphism mapping. Our exploration also extends to popular policy improvement methods for DSIL, encompassing reinforcement learning, deep reinforcement learning, and evolutionary strategies.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

北京阿比特科技有限公司