This paper considers a novel multi-agent linear stochastic approximation algorithm driven by Markovian noise and general consensus-type interaction, in which each agent evolves according to its local stochastic approximation process which depends on the information from its neighbors. The interconnection structure among the agents is described by a time-varying directed graph. While the convergence of consensus-based stochastic approximation algorithms when the interconnection among the agents is described by doubly stochastic matrices (at least in expectation) has been studied, less is known about the case when the interconnection matrix is simply stochastic. For any uniformly strongly connected graph sequences whose associated interaction matrices are stochastic, the paper derives finite-time bounds on the mean-square error, defined as the deviation of the output of the algorithm from the unique equilibrium point of the associated ordinary differential equation. For the case of interconnection matrices being stochastic, the equilibrium point can be any unspecified convex combination of the local equilibria of all the agents in the absence of communication. Both the cases with constant and time-varying step-sizes are considered. In the case when the convex combination is required to be a straight average and interaction between any pair of neighboring agents may be uni-directional, so that doubly stochastic matrices cannot be implemented in a distributed manner, the paper proposes a push-sum-type distributed stochastic approximation algorithm and provides its finite-time bound for the time-varying step-size case by leveraging the analysis for the consensus-type algorithm with stochastic matrices and developing novel properties of the push-sum algorithm.
We study the overparametrization bounds required for the global convergence of stochastic gradient descent algorithm for a class of one hidden layer feed-forward neural networks, considering most of the activation functions used in practice, including ReLU. We improve the existing state-of-the-art results in terms of the required hidden layer width. We introduce a new proof technique combining nonlinear analysis with properties of random initializations of the network. First, we establish the global convergence of continuous solutions of the differential inclusion being a nonsmooth analogue of the gradient flow for the MSE loss. Second, we provide a technical result (working also for general approximators) relating solutions of the aforementioned differential inclusion to the (discrete) stochastic gradient descent sequences, hence establishing linear convergence towards zero loss for the stochastic gradient descent iterations.
Parareal is a well-studied algorithm for numerically integrating systems of time-dependent differential equations by parallelising the temporal domain. Given approximate initial values at each temporal sub-interval, the algorithm locates a solution in a fixed number of iterations using a predictor-corrector, stopping once a tolerance is met. This iterative process combines solutions located by inexpensive (coarse resolution) and expensive (fine resolution) numerical integrators. In this paper, we introduce a stochastic parareal algorithm aimed at accelerating the convergence of the deterministic parareal algorithm. Instead of providing the predictor-corrector with a deterministically located set of initial values, the stochastic algorithm samples initial values from dynamically varying probability distributions in each temporal sub-interval. All samples are then propagated in parallel using the expensive integrator. The set of sampled initial values yielding the most continuous (smoothest) trajectory across consecutive sub-intervals are fed into the predictor-corrector, converging in fewer iterations than the deterministic algorithm with a given probability. The performance of the stochastic algorithm, implemented using various probability distributions, is illustrated on low-dimensional systems of ordinary differential equations (ODEs). We provide numerical evidence that when the number of sampled initial values is large enough, stochastic parareal converges almost certainly in fewer iterations than the deterministic algorithm, maintaining solution accuracy. Given its stochastic nature, we also highlight that multiple simulations of stochastic parareal return a distribution of solutions that can represent a measure of uncertainty over the ODE solution.
Iterative distributed optimization algorithms involve multiple agents that communicate with each other, over time, in order to minimize/maximize a global objective. In the presence of unreliable communication networks, the Age-of-Information (AoI), which measures the freshness of data received, may be large and hence hinder algorithmic convergence. In this paper, we study the convergence of general distributed gradient-based optimization algorithms in the presence of communication that neither happens periodically nor at stochastically independent points in time. We show that convergence is guaranteed provided the random variables associated with the AoI processes are stochastically dominated by a random variable with finite first moment. This improves on previous requirements of boundedness of more than the first moment. We then introduce stochastically strongly connected (SSC) networks, a new stochastic form of strong connectedness for time-varying networks. We show: If for any $p \ge0$ the processes that describe the success of communication between agents in a SSC network are $\alpha$-mixing with $n^{p-1}\alpha(n)$ summable, then the associated AoI processes are stochastically dominated by a random variable with finite $p$-th moment. In combination with our first contribution, this implies that distributed stochastic gradient descend converges in the presence of AoI, if $\alpha(n)$ is summable.
Obtaining first-order regret bounds -- regret bounds scaling not as the worst-case but with some measure of the performance of the optimal policy on a given instance -- is a core question in sequential decision-making. While such bounds exist in many settings, they have proven elusive in reinforcement learning with large state spaces. In this work we address this gap, and show that it is possible to obtain regret scaling as $\mathcal{O}(\sqrt{V_1^\star K})$ in reinforcement learning with large state spaces, namely the linear MDP setting. Here $V_1^\star$ is the value of the optimal policy and $K$ is the number of episodes. We demonstrate that existing techniques based on least squares estimation are insufficient to obtain this result, and instead develop a novel robust self-normalized concentration bound based on the robust Catoni mean estimator, which may be of independent interest.
We analyze stochastic conditional gradient methods for constrained optimization problems arising in over-parametrized machine learning. We show that one could leverage the interpolation-like conditions satisfied by such models to obtain improved oracle complexities. Specifically, when the objective function is convex, we show that the conditional gradient method requires $\mathcal{O}(\epsilon^{-2})$ calls to the stochastic gradient oracle to find an $\epsilon$-optimal solution. Furthermore, by including a gradient sliding step, we show that the number of calls reduces to $\mathcal{O}(\epsilon^{-1.5})$.
Motivated by applications in reinforcement learning (RL), we study a nonlinear stochastic approximation (SA) algorithm under Markovian noise, and establish its finite-sample convergence bounds under various stepsizes. Specifically, we show that when using constant stepsize (i.e., $\alpha_k\equiv \alpha$), the algorithm achieves exponential fast convergence to a neighborhood (with radius $O(\alpha\log(1/\alpha))$) around the desired limit point. When using diminishing stepsizes with appropriate decay rate, the algorithm converges with rate $O(\log(k)/k)$. Our proof is based on Lyapunov drift arguments, and to handle the Markovian noise, we exploit the fast mixing of the underlying Markov chain. To demonstrate the generality of our theoretical results on Markovian SA, we use it to derive the finite-sample bounds of the popular $Q$-learning with linear function approximation algorithm, under a condition on the behavior policy. Importantly, we do not need to make the assumption that the samples are i.i.d., and do not require an artificial projection step in the algorithm to maintain the boundedness of the iterates. Numerical simulations corroborate our theoretical results.
There is growing interest in applying distributed machine learning to edge computing, forming federated edge learning. Federated edge learning faces non-i.i.d. and heterogeneous data, and the communication between edge workers, possibly through distant locations and with unstable wireless networks, is more costly than their local computational overhead. In this work, we propose DONE, a distributed approximate Newton-type algorithm with fast convergence rate for communication-efficient federated edge learning. First, with strongly convex and smooth loss functions, DONE approximates the Newton direction in a distributed manner using the classical Richardson iteration on each edge worker. Second, we prove that DONE has linear-quadratic convergence and analyze its communication complexities. Finally, the experimental results with non-i.i.d. and heterogeneous data show that DONE attains a comparable performance to the Newton's method. Notably, DONE requires fewer communication iterations compared to distributed gradient descent and outperforms DANE and FEDL, state-of-the-art approaches, in the case of non-quadratic loss functions.
We study the problem of estimating the diagonal of an implicitly given matrix $A$. For such a matrix we have access to an oracle that allows us to evaluate the matrix vector product $Av$. For random variable $v$ drawn from an appropriate distribution, this may be used to return an estimate of the diagonal of the matrix $A$. Whilst results exist for probabilistic guarantees relating to the error of estimates of the trace of $A$, no such results have yet been derived for the diagonal. We analyse the number of queries $s$ required to guarantee that with probability at least $1-\delta$ the estimates of the relative error of the diagonal entries is at most $\varepsilon$. We extend this analysis to the 2-norm of the difference between the estimate and the diagonal of $A$. We prove, discuss and experiment with bounds on the number of queries $s$ required to guarantee a probabilistic bound on the estimates of the diagonal by employing Rademacher and Gaussian random variables. Two sufficient upper bounds on the minimum number of query vectors are proved, extending the work of Avron and Toledo [JACM 58(2)8, 2011], and later work of Roosta-Khorasani and Ascher [FoCM 15, 1187-1212, 2015]. We find that, generally, there is little difference between the two, with convergence going as $O(\log(1/\delta)/\varepsilon^2)$ for individual diagonal elements. However for small $s$, we find that the Rademacher estimator is superior. These results allow us to then extend the ideas of Meyer, Musco, Musco and Woodruff [SOSA, 142-155, 2021], suggesting algorithm Diag++, to speed up the convergence of diagonal estimation from $O(1/\varepsilon^2)$ to $O(1/\varepsilon)$ and make it robust to the spectrum of any positive semi-definite matrix $A$.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.