亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deepfakes have raised significant concerns due to their potential to spread false information and compromise digital media integrity. In this work, we propose a Generative Convolutional Vision Transformer (GenConViT) for deepfake video detection. Our model combines ConvNeXt and Swin Transformer models for feature extraction, and it utilizes Autoencoder and Variational Autoencoder to learn from the latent data distribution. By learning from the visual artifacts and latent data distribution, GenConViT achieves improved performance in detecting a wide range of deepfake videos. The model is trained and evaluated on DFDC, FF++, DeepfakeTIMIT, and Celeb-DF v2 datasets, achieving high classification accuracy, F1 scores, and AUC values. The proposed GenConViT model demonstrates robust performance in deepfake video detection, with an average accuracy of 95.8% and an AUC value of 99.3% across the tested datasets. Our proposed model addresses the challenge of generalizability in deepfake detection by leveraging visual and latent features and providing an effective solution for identifying a wide range of fake videos while preserving media integrity. The code for GenConViT is available at //github.com/erprogs/GenConViT.

相關內容

Similar to the revolution of open source code sharing, Artificial Intelligence (AI) model sharing is gaining increased popularity. However, the fast adaptation in the industry, lack of awareness, and ability to exploit the models make them significant attack vectors. By embedding malware in neurons, the malware can be delivered covertly, with minor or no impact on the neural network's performance. The covert attack will use the Least Significant Bits (LSB) weight attack since LSB has a minimal effect on the model accuracy, and as a result, the user will not notice it. Since there are endless ways to hide the attacks, we focus on a zero-trust prevention strategy based on AI model attack disarm and reconstruction. We proposed three types of model steganography weight disarm defense mechanisms. The first two are based on random bit substitution noise, and the other on model weight quantization. We demonstrate a 100\% prevention rate while the methods introduce a minimal decrease in model accuracy based on Qint8 and K-LRBP methods, which is an essential factor for improving AI security.

Partially spoofed audio detection is a challenging task, lying in the need to accurately locate the authenticity of audio at the frame level. To address this issue, we propose a fine-grained partially spoofed audio detection method, namely Temporal Deepfake Location (TDL), which can effectively capture information of both features and locations. Specifically, our approach involves two novel parts: embedding similarity module and temporal convolution operation. To enhance the identification between the real and fake features, the embedding similarity module is designed to generate an embedding space that can separate the real frames from fake frames. To effectively concentrate on the position information, temporal convolution operation is proposed to calculate the frame-specific similarities among neighboring frames, and dynamically select informative neighbors to convolution. Extensive experiments show that our method outperform baseline models in ASVspoof2019 Partial Spoof dataset and demonstrate superior performance even in the crossdataset scenario. The code is released online.

Software testing is an important part of the development cycle, yet it requires specialized expertise and substantial developer effort to adequately test software. Recent discoveries of the capabilities of large language models (LLMs) suggest that they can be used as automated testing assistants, and thus provide helpful information and even drive the testing process. To highlight the potential of this technology, we present a taxonomy of LLM-based testing agents based on their level of autonomy, and describe how a greater level of autonomy can benefit developers in practice. An example use of LLMs as a testing assistant is provided to demonstrate how a conversational framework for testing can help developers. This also highlights how the often criticized hallucination of LLMs can be beneficial for testing. We identify other tangible benefits that LLM-driven testing agents can bestow, and also discuss potential limitations.

We propose the simplest SGD enhanced method ever, Loss-Controlled Asymmetric Momentum(LCAM), aimed directly at the Saddle Point problem. Compared to the traditional SGD with Momentum, there's no increase in computational demand, yet it outperforms all current optimizers. We use the concepts of weight conjugation and traction effect to explain this phenomenon. We designed experiments to rapidly reduce the learning rate at specified epochs to trap parameters more easily at saddle points. We selected WRN28-10 as the test network and chose cifar10 and cifar100 as test datasets, an identical group to the original paper of WRN and Cosine Annealing Scheduling(CAS). We compared the ability to bypass saddle points of Asymmetric Momentum with different priorities. Finally, using WRN28-10 on Cifar100, we achieved a peak average test accuracy of 80.78\% around 120 epoch. For comparison, the original WRN paper reported 80.75\%, while CAS was at 80.42\%, all at 200 epoch. This means that while potentially increasing accuracy, we use nearly half convergence time. Our demonstration code is available at\\ //github.com/hakumaicc/Asymmetric-Momentum-LCAM

Internet of Things (IoT) sensors are nowadays heavily utilized in various real-world applications ranging from wearables to smart buildings passing by agrotechnology and health monitoring. With the huge amounts of data generated by these tiny devices, Deep Learning (DL) models have been extensively used to enhance them with intelligent processing. However, with the urge for smaller and more accurate devices, DL models became too heavy to deploy. It is thus necessary to incorporate the hardware's limited resources in the design process. Therefore, inspired by the human brain known for its efficiency and low power consumption, we propose a shallow bidirectional network based on predictive coding theory and dynamic early exiting for halting further computations when a performance threshold is surpassed. We achieve comparable accuracy to VGG-16 in image classification on CIFAR-10 with fewer parameters and less computational complexity.

As surgical interventions trend towards minimally invasive approaches, Concentric Tube Robots (CTRs) have been explored for various interventions such as brain, eye, fetoscopic, lung, cardiac and prostate surgeries. Arranged concentrically, each tube is rotated and translated independently to move the robot end-effector position, making kinematics and control challenging. Classical model-based approaches have been previously investigated with developments in deep learning based approaches outperforming more classical approaches in both forward kinematics and shape estimation. We propose a deep reinforcement learning approach to control where we generalise across two to four systems, an element not yet achieved in any other deep learning approach for CTRs. In this way we explore the likely robustness of the control approach. Also investigated is the impact of rotational constraints applied on tube actuation and the effects on error metrics. We evaluate inverse kinematics errors and tracking error for path following tasks and compare the results to those achieved using state of the art methods. Additionally, as current results are performed in simulation, we also investigate a domain transfer approach known as domain randomization and evaluate error metrics as an initial step towards hardware implementation. Finally, we compare our method to a Jacobian approach found in literature.

We begin by introducing a class of conditional density estimators based on local polynomial techniques. The estimators are boundary adaptive and easy to implement. We then study the (pointwise and) uniform statistical properties of the estimators, offering characterizations of both probability concentration and distributional approximation. In particular, we establish uniform convergence rates in probability and valid Gaussian distributional approximations for the Studentized t-statistic process. We also discuss implementation issues such as consistent estimation of the covariance function for the Gaussian approximation, optimal integrated mean squared error bandwidth selection, and valid robust bias-corrected inference. We illustrate the applicability of our results by constructing valid confidence bands and hypothesis tests for both parametric specification and shape constraints, explicitly characterizing their approximation errors. A companion R software package implementing our main results is provided.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司