亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study the problem of learning an unknown quantum circuit of a certain structure. If the unknown target is an $n$-qubit Clifford circuit, we devise an efficient algorithm to reconstruct its circuit representation by using $O(n^2)$ queries to it. For decades, it has been unknown how to handle circuits beyond the Clifford group since the stabilizer formalism cannot be applied in this case. Herein, we study quantum circuits of $T$-depth one on the computational basis. We show that the output state of a $T$-depth one circuit can be represented by a stabilizer pseudomixture with a specific algebraic structure. Using Pauli and Bell measurements on copies of the output states, we can generate a hypothesis circuit that is equivalent to the unknown target circuit on computational basis states as input. If the number of $T$ gates of the target is of the order $O({{\log n}})$, our algorithm requires $O(n^2)$ queries to it and produces its equivalent circuit representation on the computational basis in time $O(n^3)$. Using further additional $O(4^{3n})$ classical computations, we can derive an exact description of the target for arbitrary input states. Our results greatly extend the previously known facts that stabilizer states can be efficiently identified based on the stabilizer formalism.

相關內容

Given a dataset of input states, measurements, and probabilities, is it possible to efficiently predict the measurement probabilities associated with a quantum circuit? Recent work of Caro and Datta (2020) studied the problem of PAC learning quantum circuits in an information theoretic sense, leaving open questions of computational efficiency. In particular, one candidate class of circuits for which an efficient learner might have been possible was that of Clifford circuits, since the corresponding set of states generated by such circuits, called stabilizer states, are known to be efficiently PAC learnable (Rocchetto 2018). Here we provide a negative result, showing that proper learning of CNOT circuits is hard for classical learners unless $\textsf{RP} = \textsf{NP}$. As the classical analogue and subset of Clifford circuits, this naturally leads to a hardness result for Clifford circuits as well. Additionally, we show that if $\textsf{RP} = \textsf{NP}$ then there would exist efficient proper learning algorithms for CNOT and Clifford circuits. By similar arguments, we also find that an efficient proper quantum learner for such circuits exists if and only if $\textsf{NP} \subseteq \textsf{RQP}$.

Existing quantum compilers optimize quantum circuits by applying circuit transformations designed by experts. This approach requires significant manual effort to design and implement circuit transformations for different quantum devices, which use different gate sets, and can miss optimizations that are hard to find manually. We propose Quartz, a quantum circuit superoptimizer that automatically generates and verifies circuit transformations for arbitrary quantum gate sets. For a given gate set, Quartz generates candidate circuit transformations by systematically exploring small circuits and verifies the discovered transformations using an automated theorem prover. To optimize a quantum circuit, Quartz uses a cost-based backtracking search that applies the verified transformations to the circuit. Our evaluation on three popular gate sets shows that Quartz can effectively generate and verify transformations for different gate sets. The generated transformations cover manually designed transformations used by existing optimizers and also include new transformations. Quartz is therefore able to optimize a broad range of circuits for diverse gate sets, outperforming or matching the performance of hand-tuned circuit optimizers.

Applications of Reinforcement Learning (RL), in which agents learn to make a sequence of decisions despite lacking complete information about the latent states of the controlled system, that is, they act under partial observability of the states, are ubiquitous. Partially observable RL can be notoriously difficult -- well-known information-theoretic results show that learning partially observable Markov decision processes (POMDPs) requires an exponential number of samples in the worst case. Yet, this does not rule out the existence of large subclasses of POMDPs over which learning is tractable. In this paper we identify such a subclass, which we call weakly revealing POMDPs. This family rules out the pathological instances of POMDPs where observations are uninformative to a degree that makes learning hard. We prove that for weakly revealing POMDPs, a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to guarantee polynomial sample complexity. To the best of our knowledge, this is the first provably sample-efficient result for learning from interactions in overcomplete POMDPs, where the number of latent states can be larger than the number of observations.

We present a data-efficient framework for solving sequential decision-making problems which exploits the combination of reinforcement learning (RL) and latent variable generative models. The framework, called GenRL, trains deep policies by introducing an action latent variable such that the feed-forward policy search can be divided into two parts: (i) training a sub-policy that outputs a distribution over the action latent variable given a state of the system, and (ii) unsupervised training of a generative model that outputs a sequence of motor actions conditioned on the latent action variable. GenRL enables safe exploration and alleviates the data-inefficiency problem as it exploits prior knowledge about valid sequences of motor actions. Moreover, we provide a set of measures for evaluation of generative models such that we are able to predict the performance of the RL policy training prior to the actual training on a physical robot. We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training on two robotics tasks: shooting a hockey puck and throwing a basketball. Furthermore, we empirically demonstrate that GenRL is the only method which can safely and efficiently solve the robotics tasks compared to two state-of-the-art RL methods.

Works on quantum computing and cryptanalysis has increased significantly in the past few years. Various constructions of quantum arithmetic circuits, as one of the essential components in the field, has also been proposed. However, there has only been a few studies on finite field inversion despite its essential use in realizing quantum algorithms, such as in Shor's algorithm for Elliptic Curve Discrete Logarith Problem (ECDLP). In this study, we propose to reduce the depth of the existing quantum Fermat's Little Theorem (FLT)-based inversion circuit for binary finite field. In particular, we propose follow a complete waterfall approach to translate the Itoh-Tsujii's variant of FLT to the corresponding quantum circuit and remove the inverse squaring operations employed in the previous work by Banegas et al., lowering the number of CNOT gates (CNOT count), which contributes to reduced overall depth and gate count. Furthermore, compare the cost by firstly constructing our method and previous work's in Qiskit quantum computer simulator and perform the resource analysis. Our approach can serve as an alternative for a time-efficient implementation.

Holonomic functions play an essential role in Computer Algebra since they allow the application of many symbolic algorithms. Among all algorithmic attempts to find formulas for power series, the holonomic property remains the most important requirement to be satisfied by the function under consideration. The targeted functions mainly summarize that of meromorphic functions. However, expressions like $\tan(z)$, $z/(\exp(z)-1)$, $\sec(z)$, etc., particularly, reciprocals, quotients and compositions of holonomic functions, are generally not holonomic. Therefore their power series are inaccessible by the holonomic framework. From the mathematical dictionaries, one can observe that most of the known closed-form formulas of non-holonomic power series involve another sequence whose evaluation depends on some finite summations. In the case of $\tan(z)$ and $\sec(z)$ the corresponding sequences are the Bernoulli and Euler numbers, respectively. Thus providing a symbolic approach that yields complete representations when linear summations for power series coefficients of non-holonomic functions appear, might be seen as a step forward towards the representation of non-holonomic power series. By adapting the method of ansatz with undetermined coefficients, we build an algorithm that computes least-order quadratic differential equations with polynomial coefficients for a large class of non-holonomic functions. A differential equation resulting from this procedure is converted into a recurrence equation by applying the Cauchy product formula and rewriting powers into polynomials and derivatives into shifts. Finally, using enough initial values we are able to give normal form representations to characterize several non-holonomic power series and prove non-trivial identities. We discuss this algorithm and its implementation for Maple 2022.

There are many important high dimensional function classes that have fast agnostic learning algorithms when strong assumptions on the distribution of examples can be made, such as Gaussianity or uniformity over the domain. But how can one be sufficiently confident that the data indeed satisfies the distributional assumption, so that one can trust in the output quality of the agnostic learning algorithm? We propose a model by which to systematically study the design of tester-learner pairs $(\mathcal{A},\mathcal{T})$, such that if the distribution on examples in the data passes the tester $\mathcal{T}$ then one can safely trust the output of the agnostic learner $\mathcal{A}$ on the data. To demonstrate the power of the model, we apply it to the classical problem of agnostically learning halfspaces under the standard Gaussian distribution and present a tester-learner pair with a combined run-time of $n^{\tilde{O}(1/\epsilon^4)}$. This qualitatively matches that of the best known ordinary agnostic learning algorithms for this task. In contrast, finite sample Gaussian distribution testers do not exist for the $L_1$ and EMD distance measures. A key step in the analysis is a novel characterization of concentration and anti-concentration properties of a distribution whose low-degree moments approximately match those of a Gaussian. We also use tools from polynomial approximation theory. In contrast, we show strong lower bounds on the combined run-times of tester-learner pairs for the problems of agnostically learning convex sets under the Gaussian distribution and for monotone Boolean functions under the uniform distribution over $\{0,1\}^n$. Through these lower bounds we exhibit natural problems where there is a dramatic gap between standard agnostic learning run-time and the run-time of the best tester-learner pair.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司