Generative Adversarial Networks (GANs) should produce synthetic data that fits the underlying distribution of the data being modeled. For real valued time-series data, this implies the need to simultaneously capture the static distribution of the data, but also the full temporal distribution of the data for any potential time horizon. This temporal element produces a more complex problem that can potentially leave current solutions under-constrained, unstable during training, or prone to varying degrees of mode collapse. In FETSGAN, entire sequences are translated directly to the generator's sampling space using a seq2seq style adversarial auto encoder (AAE), where adversarial training is used to match the training distribution in both the feature space and the lower dimensional sampling space. This additional constraint provides a loose assurance that the temporal distribution of the synthetic samples will not collapse. In addition, the First Above Threshold (FAT) operator is introduced to supplement the reconstruction of encoded sequences, which improves training stability and the overall quality of the synthetic data being generated. These novel contributions demonstrate a significant improvement to the current state of the art for adversarial learners in qualitative measures of temporal similarity and quantitative predictive ability of data generated through FETSGAN.
Nowadays, data augmentation through synthetic data has been widely used in the field of Grammatical Error Correction (GEC) to alleviate the problem of data scarcity. However, these synthetic data are mainly used in the pre-training phase rather than the data-limited fine-tuning phase due to inconsistent error distribution and noisy labels. In this paper, we propose a synthetic data construction method based on contextual augmentation, which can ensure an efficient augmentation of the original data with a more consistent error distribution. Specifically, we combine rule-based substitution with model-based generation, using the generative model to generate a richer context for the extracted error patterns. Besides, we also propose a relabeling-based data cleaning method to mitigate the effects of noisy labels in synthetic data. Experiments on CoNLL14 and BEA19-Test show that our proposed augmentation method consistently and substantially outperforms strong baselines and achieves the state-of-the-art level with only a few synthetic data.
Bilevel optimization (BO) has recently gained prominence in many machine learning applications due to its ability to capture the nested structure inherent in these problems. Recently, many hypergradient methods have been proposed as effective solutions for solving large-scale problems. However, current hypergradient methods for the lower-level constrained bilevel optimization (LCBO) problems need very restrictive assumptions, namely, where optimality conditions satisfy the differentiability and invertibility conditions and lack a solid analysis of the convergence rate. What's worse, existing methods require either double-loop updates, which are sometimes less efficient. To solve this problem, in this paper, we propose a new hypergradient of LCBO leveraging the theory of nonsmooth implicit function theorem instead of using the restrive assumptions. In addition, we propose a \textit{single-loop single-timescale} algorithm based on the double-momentum method and adaptive step size method and prove it can return a $(\delta, \epsilon)$-stationary point with $\tilde{\mathcal{O}}(d_2^2\epsilon^{-4})$ iterations. Experiments on two applications demonstrate the effectiveness of our proposed method.
Large-scale datasets with point-wise semantic and instance labels are crucial to 3D instance segmentation but also expensive. To leverage unlabeled data, previous semi-supervised 3D instance segmentation approaches have explored self-training frameworks, which rely on high-quality pseudo labels for consistency regularization. They intuitively utilize both instance and semantic pseudo labels in a joint learning manner. However, semantic pseudo labels contain numerous noise derived from the imbalanced category distribution and natural confusion of similar but distinct categories, which leads to severe collapses in self-training. Motivated by the observation that 3D instances are non-overlapping and spatially separable, we ask whether we can solely rely on instance consistency regularization for improved semi-supervised segmentation. To this end, we propose a novel self-training network InsTeacher3D to explore and exploit pure instance knowledge from unlabeled data. We first build a parallel base 3D instance segmentation model DKNet, which distinguishes each instance from the others via discriminative instance kernels without reliance on semantic segmentation. Based on DKNet, we further design a novel instance consistency regularization framework to generate and leverage high-quality instance pseudo labels. Experimental results on multiple large-scale datasets show that the InsTeacher3D significantly outperforms prior state-of-the-art semi-supervised approaches. Code is available: //github.com/W1zheng/InsTeacher3D.
We study matroid prophet inequalities when distributions are unknown and accessible only through samples. While single-sample prophet inequalities for special matroids are known, no constant-factor competitive algorithm with even a sublinear number of samples was known for general matroids. Adding more to the stake, the single-sample version of the question for general matroids has close (two-way) connections with the long-standing matroid secretary conjecture. In this work, we give a $(\frac14 - \varepsilon)$-competitive matroid prophet inequality with only $O_\varepsilon(\mathrm{poly} \log n)$ samples. Our algorithm consists of two parts: (i) a novel quantile-based reduction from matroid prophet inequalities to online contention resolution schemes (OCRSs) with $O_\varepsilon(\log n)$ samples, and (ii) a $(\frac14 - \varepsilon)$-selectable matroid OCRS with $O_\varepsilon(\mathrm{poly} \log n)$ samples which carefully addresses an adaptivity challenge.
We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI), which captures a spatial-spectral data cube using snapshot 2D measurements and uses algorithms to reconstruct 3D hyperspectral images (HSI). However, current methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies and non-local similarities. The recently popular Transformer-based methods are poorly deployed on downstream tasks due to the high computational cost caused by self-attention. In this paper, we propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN), applying deformable convolutional networks (DCN) to this task for the first time. Considering the sparsity of HSI, we design a deformable convolution module that exploits its deformability to capture long-range dependencies and non-local similarities. In addition, we propose a new spectral information interaction module that considers both coarse-grained and fine-grained spectral similarities. Extensive experiments demonstrate that our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
We consider a truthful facility location problem in which there is a set of agents with private locations on the line of real numbers, and the goal is to place a number of facilities at different locations chosen from the set of those reported by the agents. Given a feasible solution, each agent suffers an individual cost that is either its total distance to all facilities (sum-variant) or its distance to the farthest facility (max-variant). For both variants, we show tight bounds on the approximation ratio of strategyproof mechanisms in terms of the social cost, the total individual cost of the agents.
In the era of large language models (LLMs), efficient and accurate data retrieval has become increasingly crucial for the use of domain-specific or private data in the retrieval augmented generation (RAG). Neural graph databases (NGDBs) have emerged as a powerful paradigm that combines the strengths of graph databases (GDBs) and neural networks to enable efficient storage, retrieval, and analysis of graph-structured data which can be adaptively trained with LLMs. The usage of neural embedding storage and Complex neural logical Query Answering (CQA) provides NGDBs with generalization ability. When the graph is incomplete, by extracting latent patterns and representations, neural graph databases can fill gaps in the graph structure, revealing hidden relationships and enabling accurate query answering. Nevertheless, this capability comes with inherent trade-offs, as it introduces additional privacy risks to the domain-specific or private databases. Malicious attackers can infer more sensitive information in the database using well-designed queries such as from the answer sets of where Turing Award winners born before 1950 and after 1940 lived, the living places of Turing Award winner Hinton are probably exposed, although the living places may have been deleted in the training stage due to the privacy concerns. In this work, we propose a privacy-preserved neural graph database (P-NGDB) framework to alleviate the risks of privacy leakage in NGDBs. We introduce adversarial training techniques in the training stage to enforce the NGDBs to generate indistinguishable answers when queried with private information, enhancing the difficulty of inferring sensitive information through combinations of multiple innocuous queries.
Machine unlearning is an emerging technology that has come to attract widespread attention. A number of factors, including regulations and laws, privacy, and usability concerns, have resulted in this need to allow a trained model to forget some of its training data. Existing studies of machine unlearning mainly focus on unlearning requests that forget a cluster of instances or all instances from one class. While these approaches are effective in removing instances, they do not scale to scenarios where partial targets within an instance need to be forgotten. For example, one would like to only unlearn a person from all instances that simultaneously contain the person and other targets. Directly migrating instance-level unlearning to target-level unlearning will reduce the performance of the model after the unlearning process, or fail to erase information completely. To address these concerns, we have proposed a more effective and efficient unlearning scheme that focuses on removing partial targets from the model, which we name "target unlearning". Specifically, we first construct an essential graph data structure to describe the relationships between all important parameters that are selected based on the model explanation method. After that, we simultaneously filter parameters that are also important for the remaining targets and use the pruning-based unlearning method, which is a simple but effective solution to remove information about the target that needs to be forgotten. Experiments with different training models on various datasets demonstrate the effectiveness of the proposed approach.
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.