亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hierarchical forecasting problems arise when time series have a natural group structure, and predictions at multiple levels of aggregation and disaggregation across the groups are needed. In such problems, it is often desired to satisfy the aggregation constraints in a given hierarchy, referred to as hierarchical coherence in the literature. Maintaining coherence while producing accurate forecasts can be a challenging problem, especially in the case of probabilistic forecasting. We present a novel method capable of accurate and coherent probabilistic forecasts for time series when reliable hierarchical information is present. We call it Deep Poisson Mixture Network (DPMN). It relies on the combination of neural networks and a statistical model for the joint distribution of the hierarchical multivariate time series structure. By construction, the model guarantees hierarchical coherence and provides simple rules for aggregation and disaggregation of the predictive distributions. We perform an extensive empirical evaluation comparing the DPMN to other state-of-the-art methods which produce hierarchically coherent probabilistic forecasts on multiple public datasets. Comparing to existing coherent probabilistic models, we obtain a relative improvement in the overall Continuous Ranked Probability Score (CRPS) of 11.8% on Australian domestic tourism data, and 8.1% on the Favorita grocery sales dataset, where time series are grouped with geographical hierarchies or travel intent hierarchies. For San Francisco Bay Area highway traffic, where the series' hierarchical structure is randomly assigned, and their correlations are less informative, our method does not show significant performance differences over statistical baselines.

相關內容

The ability to plan actions on multiple levels of abstraction enables intelligent agents to solve complex tasks effectively. However, learning the models for both low and high-level planning from demonstrations has proven challenging, especially with higher-dimensional inputs. To address this issue, we propose to use reinforcement learning to identify subgoals in expert trajectories by associating the magnitude of the rewards with the predictability of low-level actions given the state and the chosen subgoal. We build a vector-quantized generative model for the identified subgoals to perform subgoal-level planning. In experiments, the algorithm excels at solving complex, long-horizon decision-making problems outperforming state-of-the-art. Because of its ability to plan, our algorithm can find better trajectories than the ones in the training set

Deep probabilistic time series forecasting has gained significant attention due to its ability to provide valuable uncertainty quantification for decision-making tasks. However, many existing models oversimplify the problem by assuming the error process is time-independent, thereby overlooking the serial correlation in the error process. This oversight can potentially diminish the accuracy of the forecasts, rendering these models less effective for decision-making purposes. To overcome this limitation, we propose an innovative training method that incorporates error autocorrelation to enhance the accuracy of probabilistic forecasting. Our method involves constructing a mini-batch as a collection of $D$ consecutive time series segments for model training and explicitly learning a covariance matrix over each mini-batch that encodes the error correlation among adjacent time steps. The resulting covariance matrix can be used to improve prediction accuracy and enhance uncertainty quantification. We evaluate our method using DeepAR on multiple public datasets, and the experimental results confirm that our framework can effectively capture the error autocorrelation and enhance probabilistic forecasting.

When multiple forecasts are available for a probability distribution, forecast combining enables a pragmatic synthesis of the available information to extract the wisdom of the crowd. A linear opinion pool has been widely used, whereby the combining is applied to the probability predictions of the distributional forecasts. However, it has been argued that this will tend to deliver overdispersed distributional forecasts, prompting the combination to be applied, instead, to the quantile predictions of the distributional forecasts. Results from different applications are mixed, leaving it as an empirical question whether to combine probabilities or quantiles. In this paper, we present an alternative approach. Looking at the distributional forecasts, combining the probability forecasts can be viewed as vertical combining, with quantile forecast combining seen as horizontal combining. Our alternative approach is to allow combining to take place on an angle between the extreme cases of vertical and horizontal combining. We term this angular combining. The angle is a parameter that can be optimized using a proper scoring rule. We show that, as with vertical and horizontal averaging, angular averaging results in a distribution with mean equal to the average of the means of the distributions that are being combined. We also show that angular averaging produces a distribution with lower variance than vertical averaging, and, under certain assumptions, greater variance than horizontal averaging. We provide empirical support for angular combining using weekly distributional forecasts of COVID-19 mortality at the national and state level in the U.S.

As a classical generative modeling approach, energy-based models have the natural advantage of flexibility in the form of the energy function. Recently, energy-based models have achieved great success in modeling high-dimensional data in computer vision and natural language processing. In line with these advancements, we build a multi-purpose energy-based probabilistic model for High Energy Physics events at the Large Hadron Collider. This framework builds on a powerful generative model and describes higher-order inter-particle interactions.It suits different encoding architectures and builds on implicit generation. As for applicational aspects, it can serve as a powerful parameterized event generator for physics simulation, a generic anomalous signal detector free from spurious correlations, and an augmented event classifier for particle identification.

Memory-based meta-learning is a technique for approximating Bayes-optimal predictors. Under fairly general conditions, minimizing sequential prediction error, measured by the log loss, leads to implicit meta-learning. The goal of this work is to investigate how far this interpretation can be realized by current sequence prediction models and training regimes. The focus is on piecewise stationary sources with unobserved switching-points, which arguably capture an important characteristic of natural language and action-observation sequences in partially observable environments. We show that various types of memory-based neural models, including Transformers, LSTMs, and RNNs can learn to accurately approximate known Bayes-optimal algorithms and behave as if performing Bayesian inference over the latent switching-points and the latent parameters governing the data distribution within each segment.

Aggregated curves are common structures in economics and finance, and the most prominent examples are supply and demand curves. In this study, we exploit the fact that all aggregated curves have an intrinsic hierarchical structure, and thus hierarchical reconciliation methods can be used to improve the forecast accuracy. We provide an in-depth theory on how aggregated curves can be constructed or deconstructed, and conclude that these methods are equivalent under weak assumptions. We consider multiple reconciliation methods for aggregated curves, including previously established bottom-up, top-down, and linear optimal reconciliation approaches. We also present a new benchmark reconciliation method called 'aggregated-down' with similar complexity to bottom-up and top-down approaches, but it tends to provide better accuracy in this setup. We conducted an empirical forecasting study on the German day-ahead power auction market by predicting the demand and supply curves, where their equilibrium determines the electricity price for the next day. Our results demonstrate that hierarchical reconciliation methods can be used to improve the forecasting accuracy of aggregated curves.

Navigating to destinations using human speech instructions is essential for autonomous mobile robots operating in the real world. Although robots can take different paths toward the same goal, the shortest path is not always optimal. A desired approach is to flexibly accommodate waypoint specifications, planning a better alternative path, even with detours. Furthermore, robots require real-time inference capabilities. Spatial representations include semantic, topological, and metric levels, each capturing different aspects of the environment. This study aims to realize a hierarchical spatial representation by a topometric semantic map and path planning with speech instructions, including waypoints. We propose SpCoTMHP, a hierarchical path-planning method that utilizes multimodal spatial concepts, incorporating place connectivity. This approach provides a novel integrated probabilistic generative model and fast approximate inference, with interaction among the hierarchy levels. A formulation based on control as probabilistic inference theoretically supports the proposed path planning. Navigation experiments using speech instruction with a waypoint demonstrated the performance improvement of path planning, WN-SPL by 0.589, and reduced computation time by 7.14 sec compared to conventional methods. Hierarchical spatial representations offer a mutually understandable form for humans and robots, enabling language-based navigation tasks.

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.

In this paper, we adopt 3D Convolutional Neural Networks to segment volumetric medical images. Although deep neural networks have been proven to be very effective on many 2D vision tasks, it is still challenging to apply them to 3D tasks due to the limited amount of annotated 3D data and limited computational resources. We propose a novel 3D-based coarse-to-fine framework to effectively and efficiently tackle these challenges. The proposed 3D-based framework outperforms the 2D counterpart to a large margin since it can leverage the rich spatial infor- mation along all three axes. We conduct experiments on two datasets which include healthy and pathological pancreases respectively, and achieve the current state-of-the-art in terms of Dice-S{\o}rensen Coefficient (DSC). On the NIH pancreas segmentation dataset, we outperform the previous best by an average of over 2%, and the worst case is improved by 7% to reach almost 70%, which indicates the reliability of our framework in clinical applications.

北京阿比特科技有限公司