亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the introduction of ChatGPT, OpenAI made large language models (LLM) accessible to users with limited IT expertise. However, users with no background in natural language processing (NLP) might lack a proper understanding of LLMs. Thus the awareness of their inherent limitations, and therefore will take the systems' output at face value. In this paper, we systematically analyse prompts and the generated responses to identify possible problematic issues with a special focus on gender biases, which users need to be aware of when processing the system's output. We explore how ChatGPT reacts in English and German if prompted to answer from a female, male, or neutral perspective. In an in-depth investigation, we examine selected prompts and analyse to what extent responses differ if the system is prompted several times in an identical way. On this basis, we show that ChatGPT is indeed useful for helping non-IT users draft texts for their daily work. However, it is absolutely crucial to thoroughly check the system's responses for biases as well as for syntactic and grammatical mistakes.

相關內容

Large language models (LLMs) often produce unsupported or unverifiable information, known as "hallucinations." To mitigate this, retrieval-augmented LLMs incorporate citations, grounding the content in verifiable sources. Despite such developments, manually assessing how well a citation supports the associated statement remains a major challenge. Previous studies use faithfulness metrics to estimate citation support automatically but are limited to binary classification, overlooking fine-grained citation support in practical scenarios. To investigate the effectiveness of faithfulness metrics in fine-grained scenarios, we propose a comparative evaluation framework that assesses the metric effectiveness in distinguishinging citations between three-category support levels: full, partial, and no support. Our framework employs correlation analysis, classification evaluation, and retrieval evaluation to measure the alignment between metric scores and human judgments comprehensively. Our results show no single metric consistently excels across all evaluations, revealing the complexity of assessing fine-grained support. Based on the findings, we provide practical recommendations for developing more effective metrics.

This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs). We start by making the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs, and yet it receives disproportionally low attention from the research community. We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization. In each scenario, we underscore the importance of data, highlight promising research directions, and articulate the potential impacts on the research community and, where applicable, the society as a whole. For instance, we advocate for a suite of data-centric benchmarks tailored to the scale and complexity of data for LLMs. These benchmarks can be used to develop new data curation methods and document research efforts and results, which can help promote openness and transparency in AI and LLM research.

We introduce ChatGLM, an evolving family of large language models that we have been developing over time. This report primarily focuses on the GLM-4 language series, which includes GLM-4, GLM-4-Air, and GLM-4-9B. They represent our most capable models that are trained with all the insights and lessons gained from the preceding three generations of ChatGLM. To date, the GLM-4 models are pre-trained on ten trillions of tokens mostly in Chinese and English, along with a small set of corpus from 24 languages, and aligned primarily for Chinese and English usage. The high-quality alignment is achieved via a multi-stage post-training process, which involves supervised fine-tuning and learning from human feedback. Evaluations show that GLM-4 1) closely rivals or outperforms GPT-4 in terms of general metrics such as MMLU, GSM8K, MATH, BBH, GPQA, and HumanEval, 2) gets close to GPT-4-Turbo in instruction following as measured by IFEval, 3) matches GPT-4 Turbo (128K) and Claude 3 for long context tasks, and 4) outperforms GPT-4 in Chinese alignments as measured by AlignBench. The GLM-4 All Tools model is further aligned to understand user intent and autonomously decide when and which tool(s) touse -- including web browser, Python interpreter, text-to-image model, and user-defined functions -- to effectively complete complex tasks. In practical applications, it matches and even surpasses GPT-4 All Tools in tasks like accessing online information via web browsing and solving math problems using Python interpreter. Over the course, we have open-sourced a series of models, including ChatGLM-6B (three generations), GLM-4-9B (128K, 1M), GLM-4V-9B, WebGLM, and CodeGeeX, attracting over 10 million downloads on Hugging face in the year 2023 alone. The open models can be accessed through //github.com/THUDM and //huggingface.co/THUDM.

It is imperative for Large language models (LLMs) to follow instructions with elaborate requirements (i.e. Complex Instructions Following). Yet, it remains under-explored how to enhance the ability of LLMs to follow complex instructions with multiple constraints. To bridge the gap, we initially study what training data is effective in enhancing complex constraints following abilities. We found that training LLMs with instructions containing multiple constraints enhances their understanding of complex instructions, especially those with lower complexity levels. The improvement can even generalize to compositions of out-of-domain constraints. Additionally, we further propose methods addressing how to obtain and utilize the effective training data. Finally, we conduct extensive experiments to prove the effectiveness of our methods in terms of overall performance and training efficiency. We also demonstrate that our methods improve models' ability to follow instructions generally and generalize effectively across out-of-domain, in-domain, and adversarial settings, while maintaining general capabilities.

Language Model Programs, i.e. sophisticated pipelines of modular language model (LM) calls, are increasingly advancing NLP tasks, but they require crafting prompts that are jointly effective for all modules. We study prompt optimization for LM programs, i.e. how to update these prompts to maximize a downstream metric without access to module-level labels or gradients. To make this tractable, we factorize our problem into optimizing the free-form instructions and few-shot demonstrations of every module and introduce several strategies to craft task-grounded instructions and navigate credit assignment across modules. Our strategies include (i) program- and data-aware techniques for proposing effective instructions, (ii) a stochastic mini-batch evaluation function for learning a surrogate model of our objective, and (iii) a meta-optimization procedure in which we refine how LMs construct proposals over time. Using these insights we develop MIPRO, a novel optimizer that outperforms baselines on five of six diverse LM programs using a best-in-class open-source model (Llama-3-8B), by as high as 12.9% accuracy. We will release our new optimizers and benchmark in DSPy at //github.com/stanfordnlp/dspy

Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks. However, LLMs have rarely been explored for code optimization. In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time. The recently proposed first PIE dataset for performance optimization constructs program optimization pairs based on iterative submissions from the same programmer for the same problem. However, this approach restricts LLMs to local performance improvements, neglecting global algorithmic innovation. Therefore, we adopt a completely different perspective by reconstructing the optimization pairs into a problem-oriented approach. This allows for the integration of various ingenious ideas from different programmers tackling the same problem. Experimental results demonstrate that adapting LLMs to problem-oriented optimization pairs significantly enhances their optimization capabilities. Meanwhile, we identified performance bottlenecks within the problem-oriented perspective. By employing model merge, we further overcame bottlenecks and ultimately elevated the program optimization ratio ($51.76\%\rightarrow76.65\%$) and speedup ($2.65\times\rightarrow5.09\times$) to new levels.

This paper presents an analysis of open-source large language models (LLMs) and their application in Retrieval-Augmented Generation (RAG) tasks, specific for enterprise-specific data sets scraped from their websites. With the increasing reliance on LLMs in natural language processing, it is crucial to evaluate their performance, accessibility, and integration within specific organizational contexts. This study examines various open-source LLMs, explores their integration into RAG frameworks using enterprise-specific data, and assesses the performance of different open-source embeddings in enhancing the retrieval and generation process. Our findings indicate that open-source LLMs, combined with effective embedding techniques, can significantly improve the accuracy and efficiency of RAG systems, offering a viable alternative to proprietary solutions for enterprises.

The emergence of large language models (LLMs) has significantly pushed the frontiers of program synthesis. Advancement of LLM-based program synthesis calls for a thorough evaluation of LLM-generated code. Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations. In this work, we develop ENAMEL (EfficeNcy AutoMatic EvaLuator), a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code. Firstly, we propose a new efficiency metric called eff@k, which generalizes the pass@k metric from correctness to efficiency and appropriately handles right-censored execution time. Furthermore, we derive an unbiased and variance-reduced estimator of eff@k via Rao--Blackwellization; we also provide a numerically stable implementation for the new estimator. Secondly, to set a high-standard for efficiency evaluation, we employ a human expert to design best algorithms and implementations as our reference solutions of efficiency, many of which are much more efficient than existing canonical solutions in HumanEval and HumanEval+. Moreover, to ensure a rigorous evaluation, we employ a human expert to curate strong test case generators to filter out wrong code and differentiate suboptimal algorithms. An extensive study across 30 popular LLMs using our benchmark ENAMEL shows that LLMs still fall short of generating expert-level efficient code. Using two subsets of our problem set, we demonstrate that such deficiency is because current LLMs struggle in designing advanced algorithms and are barely aware of implementation optimization. Our benchmark is publicly available at //github.com/q-rz/enamel .

Large language models (LLMs) have exhibited remarkable performance across various tasks in natural language processing. Nevertheless, challenges still arise when these tasks demand domain-specific expertise and advanced analytical skills, such as conducting research surveys on a designated topic. In this research, we develop ResearchArena, a benchmark that measures LLM agents' ability to conduct academic surveys, an initial step of academic research process. Specifically, we deconstructs the surveying process into three stages 1) information discovery: locating relevant papers, 2) information selection: assessing papers' importance to the topic, and 3) information organization: organizing papers into meaningful structures. In particular, we establish an offline environment comprising 12.0M full-text academic papers and 7.9K survey papers, which evaluates agents' ability to locate supporting materials for composing the survey on a topic, rank the located papers based on their impact, and organize these into a hierarchical knowledge mind-map. With this benchmark, we conduct preliminary evaluations of existing techniques and find that all LLM-based methods under-performing when compared to basic keyword-based retrieval techniques, highlighting substantial opportunities for future research.

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

北京阿比特科技有限公司