We solve the problem of automatically computing a new class of environment assumptions in two-player turn-based finite graph games which characterize an ``adequate cooperation'' needed from the environment to allow the system player to win. Given an $\omega$-regular winning condition $\Phi$ for the system player, we compute an $\omega$-regular assumption $\Psi$ for the environment player, such that (i) every environment strategy compliant with $\Psi$ allows the system to fulfill $\Phi$ (sufficiency), (ii) $\Psi$ can be fulfilled by the environment for every strategy of the system (implementability), and (iii) $\Psi$ does not prevent any cooperative strategy choice (permissiveness). For parity games, which are canonical representations of $\omega$-regular games, we present a polynomial-time algorithm for the symbolic computation of adequately permissive assumptions and show that our algorithm runs faster and produces better assumptions than existing approaches -- both theoretically and empirically. To the best of our knowledge, for $\omega$-regular games, we provide the first algorithm to compute sufficient and implementable environment assumptions that are also permissive.
We propose a novel approach to logic-based learning which generates assumption-based argumentation (ABA) frameworks from positive and negative examples, using a given background knowledge. These ABA frameworks can be mapped onto logic programs with negation as failure that may be non-stratified. Whereas existing argumentation-based methods learn exceptions to general rules by interpreting the exceptions as rebuttal attacks, our approach interprets them as undercutting attacks. Our learning technique is based on the use of transformation rules, including some adapted from logic program transformation rules (notably folding) as well as others, such as rote learning and assumption introduction. We present a general strategy that applies the transformation rules in a suitable order to learn stratified frameworks, and we also propose a variant that handles the non-stratified case. We illustrate the benefits of our approach with a number of examples, which show that, on one hand, we are able to easily reconstruct other logic-based learning approaches and, on the other hand, we can work out in a very simple and natural way problems that seem to be hard for existing techniques.
We propose a deep importance sampling method that is suitable for estimating rare event probabilities in high-dimensional problems. We approximate the optimal importance distribution in a general importance sampling problem as the pushforward of a reference distribution under a composition of order-preserving transformations, in which each transformation is formed by a squared tensor-train decomposition. The squared tensor-train decomposition provides a scalable ansatz for building order-preserving high-dimensional transformations via density approximations. The use of composition of maps moving along a sequence of bridging densities alleviates the difficulty of directly approximating concentrated density functions. To compute expectations over unnormalized probability distributions, we design a ratio estimator that estimates the normalizing constant using a separate importance distribution, again constructed via a composition of transformations in tensor-train format. This offers better theoretical variance reduction compared with self-normalized importance sampling, and thus opens the door to efficient computation of rare event probabilities in Bayesian inference problems. Numerical experiments on problems constrained by differential equations show little to no increase in the computational complexity with the event probability going to zero, and allow to compute hitherto unattainable estimates of rare event probabilities for complex, high-dimensional posterior densities.
We study the approximation of general multiobjective optimization problems with the help of scalarizations. Existing results state that multiobjective minimization problems can be approximated well by norm-based scalarizations. However, for multiobjective maximization problems, only impossibility results are known so far. Countering this, we show that all multiobjective optimization problems can, in principle, be approximated equally well by scalarizations. In this context, we introduce a transformation theory for scalarizations that establishes the following: Suppose there exists a scalarization that yields an approximation of a certain quality for arbitrary instances of multiobjective optimization problems with a given decomposition specifying which objective functions are to be minimized / maximized. Then, for each other decomposition, our transformation yields another scalarization that yields the same approximation quality for arbitrary instances of problems with this other decomposition. In this sense, the existing results about the approximation via scalarizations for minimization problems carry over to any other objective decomposition -- in particular, to maximization problems -- when suitably adapting the employed scalarization. We further provide necessary and sufficient conditions on a scalarization such that its optimal solutions achieve a constant approximation quality. We give an upper bound on the best achievable approximation quality that applies to general scalarizations and is tight for the majority of norm-based scalarizations applied in the context of multiobjective optimization. As a consequence, none of these norm-based scalarizations can induce approximation sets for optimization problems with maximization objectives, which unifies and generalizes the existing impossibility results concerning the approximation of maximization problems.
The Horvitz-Thompson (HT), the Rao-Hartley-Cochran (RHC) and the generalized regression (GREG) estimators of the finite population mean are considered, when the observations are from an infinite dimensional space. We compare these estimators based on their asymptotic distributions under some commonly used sampling designs and some superpopulations satisfying linear regression models. We show that the GREG estimator is asymptotically at least as efficient as any of the other two estimators under different sampling designs considered in this paper. Further, we show that the use of some well known sampling designs utilizing auxiliary information may have an adverse effect on the performance of the GREG estimator, when the degree of heteroscedasticity present in linear regression models is not very large. On the other hand, the use of those sampling designs improves the performance of this estimator, when the degree of heteroscedasticity present in linear regression models is large. We develop methods for determining the degree of heteroscedasticity, which in turn determines the choice of appropriate sampling design to be used with the GREG estimator. We also investigate the consistency of the covariance operators of the above estimators. We carry out some numerical studies using real and synthetic data, and our theoretical results are supported by the results obtained from those numerical studies.
We provide a learning-based technique for guessing a winning strategy in a parity game originating from an LTL synthesis problem. A cheaply obtained guess can be useful in several applications. Not only can the guessed strategy be applied as best-effort in cases where the game's huge size prohibits rigorous approaches, but it can also increase the scalability of rigorous LTL synthesis in several ways. Firstly, checking whether a guessed strategy is winning is easier than constructing one. Secondly, even if the guess is wrong in some places, it can be fixed by strategy iteration faster than constructing one from scratch. Thirdly, the guess can be used in on-the-fly approaches to prioritize exploration in the most fruitful directions. In contrast to previous works, we (i)~reflect the highly structured logical information in game's states, the so-called semantic labelling, coming from the recent LTL-to-automata translations, and (ii)~learn to reflect it properly by learning from previously solved games, bringing the solving process closer to human-like reasoning.
We study the problem of allocating a set of indivisible goods among a set of agents with 2-value additive valuations. In this setting, each good is valued either $1$ or $\frac{p}{q}$, for some fixed co-prime numbers $p,q\in N$ such that $1\leq q < p$, and the value of a bundle is the sum of the values of the contained goods. Our goal is to find an allocation which maximizes the Nash social welfare (NSW), i.e., the geometric mean of the valuations of the agents. In this work, we give a complete characterization of polynomial-time tractability of NSW maximization that solely depends on the values of $q$. We start by providing a rather simple polynomial-time algorithm to find a maximum NSW allocation when the valuation functions are integral, that is, $q=1$. We then exploit more involved techniques to get an algorithm producing a maximum NSW allocation for the half-integral case, that is, $q=2$. Finally, we show that such an improvement cannot be further extended to the case $q=3$; indeed, we prove that it is NP-hard to compute an allocation with maximum NSW whenever $q\geq 3$.
The Multilevel Monte Carlo (MLMC) method has proven to be an effective variance-reduction statistical method for Uncertainty Quantification (UQ) in Partial Differential Equation (PDE) models, combining model computations at different levels to create an accurate estimate. Still, the computational complexity of the resulting method is extremely high, particularly for 3D models, which requires advanced algorithms for the efficient exploitation of High Performance Computing (HPC). In this article we present a new implementation of the MLMC in massively parallel computer architectures, exploiting parallelism within and between each level of the hierarchy. The numerical approximation of the PDE is performed using the finite element method but the algorithm is quite general and could be applied to other discretization methods as well, although the focus is on parallel sampling. The two key ingredients of an efficient parallel implementation are a good processor partition scheme together with a good scheduling algorithm to assign work to different processors. We introduce a multiple partition of the set of processors that permits the simultaneous execution of different levels and we develop a dynamic scheduling algorithm to exploit it. The problem of finding the optimal scheduling of distributed tasks in a parallel computer is an NP-complete problem. We propose and analyze a new greedy scheduling algorithm to assign samples and we show that it is a 2-approximation, which is the best that may be expected under general assumptions. On top of this result we design a distributed memory implementation using the Message Passing Interface (MPI) standard. Finally we present a set of numerical experiments illustrating its scalability properties.
We present a novel method to compute \emph{permissive winning strategies} in two-player games over finite graphs with $ \omega $-regular winning conditions. Given a game graph $G$ and a parity winning condition $\Phi$, we compute a \emph{winning strategy template} $\Psi$ that collects an infinite number of winning strategies for objective $\Phi$ in a concise data structure. We use this new representation of sets of winning strategies to tackle two problems arising from applications of two-player games in the context of cyber-physical system design -- (i) \emph{incremental synthesis}, i.e., adapting strategies to newly arriving, \emph{additional} $\omega$-regular objectives $\Phi'$, and (ii) \emph{fault-tolerant control}, i.e., adapting strategies to the occasional or persistent unavailability of actuators. The main features of our strategy templates -- which we utilize for solving these challenges -- are their easy computability, adaptability, and compositionality. For \emph{incremental synthesis}, we empirically show on a large set of benchmarks that our technique vastly outperforms existing approaches if the number of added specifications increases. While our method is not complete, our prototype implementation returns the full winning region in all 1400 benchmark instances, i.e., handling a large problem class efficiently in practice.
Backpropagation (BP), the standard learning algorithm for artificial neural networks, is often considered biologically implausible. In contrast, the standard learning algorithm for predictive coding (PC) models in neuroscience, known as the inference learning algorithm (IL), is a promising, bio-plausible alternative. However, several challenges and questions hinder IL's application to real-world problems. For example, IL is computationally demanding, and without memory-intensive optimizers like Adam, IL may converge to poor local minima. Moreover, although IL can reduce loss more quickly than BP, the reasons for these speedups or their robustness remains unclear. In this paper, we tackle these challenges by 1) altering the standard implementation of PC circuits to substantially reduce computation, 2) developing a novel optimizer that improves the convergence of IL without increasing memory usage, and 3) establishing theoretical results that help elucidate the conditions under which IL is sensitive to second and higher-order information.
Probabilistic graphical models have become an important unsupervised learning tool for detecting network structures for a variety of problems, including the estimation of functional neuronal connectivity from two-photon calcium imaging data. However, in the context of calcium imaging, technological limitations only allow for partially overlapping layers of neurons in a brain region of interest to be jointly recorded. In this case, graph estimation for the full data requires inference for edge selection when many pairs of neurons have no simultaneous observations. This leads to the Graph Quilting problem, which seeks to estimate a graph in the presence of block-missingness in the empirical covariance matrix. Solutions for the Graph Quilting problem have previously been studied for Gaussian graphical models; however, neural activity data from calcium imaging are often non-Gaussian, thereby requiring a more flexible modeling approach. Thus, in our work, we study two approaches for nonparanormal Graph Quilting based on the Gaussian copula graphical model, namely a maximum likelihood procedure and a low-rank based framework. We provide theoretical guarantees on edge recovery for the former approach under similar conditions to those previously developed for the Gaussian setting, and we investigate the empirical performance of both methods using simulations as well as real data calcium imaging data. Our approaches yield more scientifically meaningful functional connectivity estimates compared to existing Gaussian graph quilting methods for this calcium imaging data set.