亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) have demonstrated strong capabilities in language understanding, generation, and reasoning, yet their potential in finance remains underexplored due to the complexity and specialization of financial knowledge. In this work, we report the development of the Baichuan4-Finance series, including a comprehensive suite of foundational Baichuan4-Finance-Base and an aligned language model Baichuan4-Finance, which are built upon Baichuan4-Turbo base model and tailored for finance domain. Firstly, we have dedicated significant effort to building a detailed pipeline for improving data quality. Moreover, in the continual pre-training phase, we propose a novel domain self-constraint training strategy, which enables Baichuan4-Finance-Base to acquire financial knowledge without losing general capabilities. After Supervised Fine-tuning and Reinforcement Learning from Human Feedback and AI Feedback, the chat model Baichuan4-Finance is able to tackle various financial certification questions and real-world scenario applications. We evaluate Baichuan4-Finance on many widely used general datasets and two holistic financial benchmarks. The evaluation results show that Baichuan4-Finance-Base surpasses almost all competitive baselines on financial tasks by significant margins without sacrificing performance on general LLM benchmarks. At the same time, Baichuan4-Finance demonstrates even more impressive performance on financial application scenarios, showcasing its potential to foster community innovation in the financial LLM field.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performance · Performer · Processing(編程語言) · 語言模型化 ·
2024 年 12 月 27 日
 DeepSeek-AI,Aixin Liu,Bei Feng,Bing Xue,Bingxuan Wang,Bochao Wu,Chengda Lu,Chenggang Zhao,Chengqi Deng,Chenyu Zhang,Chong Ruan,Damai Dai,Daya Guo,Dejian Yang,Deli Chen,Dongjie Ji,Erhang Li,Fangyun Lin,Fucong Dai,Fuli Luo,Guangbo Hao,Guanting Chen,Guowei Li,H. Zhang,Han Bao,Hanwei Xu,Haocheng Wang,Haowei Zhang,Honghui Ding,Huajian Xin,Huazuo Gao,Hui Li,Hui Qu,J. L. Cai,Jian Liang,Jianzhong Guo,Jiaqi Ni,Jiashi Li,Jiawei Wang,Jin Chen,Jingchang Chen,Jingyang Yuan,Junjie Qiu,Junlong Li,Junxiao Song,Kai Dong,Kai Hu,Kaige Gao,Kang Guan,Kexin Huang,Kuai Yu,Lean Wang,Lecong Zhang,Lei Xu,Leyi Xia,Liang Zhao,Litong Wang,Liyue Zhang,Meng Li,Miaojun Wang,Mingchuan Zhang,Minghua Zhang,Minghui Tang,Mingming Li,Ning Tian,Panpan Huang,Peiyi Wang,Peng Zhang,Qiancheng Wang,Qihao Zhu,Qinyu Chen,Qiushi Du,R. J. Chen,R. L. Jin,Ruiqi Ge,Ruisong Zhang,Ruizhe Pan,Runji Wang,Runxin Xu,Ruoyu Zhang,Ruyi Chen,S. S. Li,Shanghao Lu,Shangyan Zhou,Shanhuang Chen,Shaoqing Wu,Shengfeng Ye,Shengfeng Ye,Shirong Ma,Shiyu Wang,Shuang Zhou,Shuiping Yu,Shunfeng Zhou,Shuting Pan,T. Wang,Tao Yun,Tian Pei,Tianyu Sun,W. L. Xiao,Wangding Zeng,Wanjia Zhao,Wei An,Wen Liu,Wenfeng Liang,Wenjun Gao,Wenqin Yu,Wentao Zhang,X. Q. Li,Xiangyue Jin,Xianzu Wang,Xiao Bi,Xiaodong Liu,Xiaohan Wang,Xiaojin Shen,Xiaokang Chen,Xiaokang Zhang,Xiaosha Chen,Xiaotao Nie,Xiaowen Sun,Xiaoxiang Wang,Xin Cheng,Xin Liu,Xin Xie,Xingchao Liu,Xingkai Yu,Xinnan Song,Xinxia Shan,Xinyi Zhou,Xinyu Yang,Xinyuan Li,Xuecheng Su,Xuheng Lin,Y. K. Li,Y. Q. Wang,Y. X. Wei,Y. X. Zhu,Yang Zhang,Yanhong Xu,Yanhong Xu,Yanping Huang,Yao Li,Yao Zhao,Yaofeng Sun,Yaohui Li,Yaohui Wang,Yi Yu,Yi Zheng,Yichao Zhang,Yifan Shi,Yiliang Xiong,Ying He,Ying Tang,Yishi Piao,Yisong Wang,Yixuan Tan,Yiyang Ma,Yiyuan Liu,Yongqiang Guo,Yu Wu,Yuan Ou,Yuchen Zhu,Yuduan Wang,Yue Gong,Yuheng Zou,Yujia He,Yukun Zha,Yunfan Xiong,Yunxian Ma,Yuting Yan,Yuxiang Luo,Yuxiang You,Yuxuan Liu,Yuyang Zhou,Z. F. Wu,Z. Z. Ren,Zehui Ren,Zhangli Sha,Zhe Fu,Zhean Xu,Zhen Huang,Zhen Zhang,Zhenda Xie,Zhengyan Zhang,Zhewen Hao,Zhibin Gou,Zhicheng Ma,Zhigang Yan,Zhihong Shao,Zhipeng Xu,Zhiyu Wu,Zhongyu Zhang,Zhuoshu Li,Zihui Gu,Zijia Zhu,Zijun Liu,Zilin Li,Ziwei Xie,Ziyang Song,Ziyi Gao,Zizheng Pan
 DeepSeek-AI,Aixin Liu,Bei Feng,Bing Xue,Bingxuan Wang,Bochao Wu,Chengda Lu,Chenggang Zhao,Chengqi Deng,Chenyu Zhang,Chong Ruan,Damai Dai,Daya Guo,Dejian Yang,Deli Chen,Dongjie Ji,Erhang Li,Fangyun Lin,Fucong Dai,Fuli Luo,Guangbo Hao,Guanting Chen,Guowei Li,H. Zhang,Han Bao,Hanwei Xu,Haocheng Wang,Haowei Zhang,Honghui Ding,Huajian Xin,Huazuo Gao,Hui Li,Hui Qu,J. L. Cai,Jian Liang,Jianzhong Guo,Jiaqi Ni,Jiashi Li,Jiawei Wang,Jin Chen,Jingchang Chen,Jingyang Yuan,Junjie Qiu,Junlong Li,Junxiao Song,Kai Dong,Kai Hu,Kaige Gao,Kang Guan,Kexin Huang,Kuai Yu,Lean Wang,Lecong Zhang,Lei Xu,Leyi Xia,Liang Zhao,Litong Wang,Liyue Zhang,Meng Li,Miaojun Wang,Mingchuan Zhang,Minghua Zhang,Minghui Tang,Mingming Li,Ning Tian,Panpan Huang,Peiyi Wang,Peng Zhang,Qiancheng Wang,Qihao Zhu,Qinyu Chen,Qiushi Du,R. J. Chen,R. L. Jin,Ruiqi Ge,Ruisong Zhang,Ruizhe Pan,Runji Wang,Runxin Xu,Ruoyu Zhang,Ruyi Chen,S. S. Li,Shanghao Lu,Shangyan Zhou,Shanhuang Chen,Shaoqing Wu,Shengfeng Ye,Shengfeng Ye,Shirong Ma,Shiyu Wang,Shuang Zhou,Shuiping Yu,Shunfeng Zhou,Shuting Pan,T. Wang,Tao Yun,Tian Pei,Tianyu Sun,W. L. Xiao,Wangding Zeng,Wanjia Zhao,Wei An,Wen Liu,Wenfeng Liang,Wenjun Gao,Wenqin Yu,Wentao Zhang,X. Q. Li,Xiangyue Jin,Xianzu Wang,Xiao Bi,Xiaodong Liu,Xiaohan Wang,Xiaojin Shen,Xiaokang Chen,Xiaokang Zhang,Xiaosha Chen,Xiaotao Nie,Xiaowen Sun,Xiaoxiang Wang,Xin Cheng,Xin Liu,Xin Xie,Xingchao Liu,Xingkai Yu,Xinnan Song,Xinxia Shan,Xinyi Zhou,Xinyu Yang,Xinyuan Li,Xuecheng Su,Xuheng Lin,Y. K. Li,Y. Q. Wang,Y. X. Wei,Y. X. Zhu,Yang Zhang,Yanhong Xu,Yanhong Xu,Yanping Huang,Yao Li,Yao Zhao,Yaofeng Sun,Yaohui Li,Yaohui Wang,Yi Yu,Yi Zheng,Yichao Zhang,Yifan Shi,Yiliang Xiong,Ying He,Ying Tang,Yishi Piao,Yisong Wang,Yixuan Tan,Yiyang Ma,Yiyuan Liu,Yongqiang Guo,Yu Wu,Yuan Ou,Yuchen Zhu,Yuduan Wang,Yue Gong,Yuheng Zou,Yujia He,Yukun Zha,Yunfan Xiong,Yunxian Ma,Yuting Yan,Yuxiang Luo,Yuxiang You,Yuxuan Liu,Yuyang Zhou,Z. F. Wu,Z. Z. Ren,Zehui Ren,Zhangli Sha,Zhe Fu,Zhean Xu,Zhen Huang,Zhen Zhang,Zhenda Xie,Zhengyan Zhang,Zhewen Hao,Zhibin Gou,Zhicheng Ma,Zhigang Yan,Zhihong Shao,Zhipeng Xu,Zhiyu Wu,Zhongyu Zhang,Zhuoshu Li,Zihui Gu,Zijia Zhu,Zijun Liu,Zilin Li,Ziwei Xie,Ziyang Song,Ziyi Gao,Zizheng Pan

We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at //github.com/deepseek-ai/DeepSeek-V3.

Large language models (LLMs) have achieved superior performance in powering text-based AI agents, endowing them with decision-making and reasoning abilities akin to humans. Concurrently, there is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain. This extension enables AI agents to interpret and respond to diverse multimodal user queries, thereby handling more intricate and nuanced tasks. In this paper, we conduct a systematic review of LLM-driven multimodal agents, which we refer to as large multimodal agents ( LMAs for short). First, we introduce the essential components involved in developing LMAs and categorize the current body of research into four distinct types. Subsequently, we review the collaborative frameworks integrating multiple LMAs , enhancing collective efficacy. One of the critical challenges in this field is the diverse evaluation methods used across existing studies, hindering effective comparison among different LMAs . Therefore, we compile these evaluation methodologies and establish a comprehensive framework to bridge the gaps. This framework aims to standardize evaluations, facilitating more meaningful comparisons. Concluding our review, we highlight the extensive applications of LMAs and propose possible future research directions. Our discussion aims to provide valuable insights and guidelines for future research in this rapidly evolving field. An up-to-date resource list is available at //github.com/jun0wanan/awesome-large-multimodal-agents.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks. They have attracted significant attention and been deployed in numerous downstream applications. Nevertheless, akin to a double-edged sword, LLMs also present potential risks. They could suffer from private data leaks or yield inappropriate, harmful, or misleading content. Additionally, the rapid progress of LLMs raises concerns about the potential emergence of superintelligent systems without adequate safeguards. To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation of LLMs. This survey endeavors to offer a panoramic perspective on the evaluation of LLMs. We categorize the evaluation of LLMs into three major groups: knowledge and capability evaluation, alignment evaluation and safety evaluation. In addition to the comprehensive review on the evaluation methodologies and benchmarks on these three aspects, we collate a compendium of evaluations pertaining to LLMs' performance in specialized domains, and discuss the construction of comprehensive evaluation platforms that cover LLM evaluations on capabilities, alignment, safety, and applicability. We hope that this comprehensive overview will stimulate further research interests in the evaluation of LLMs, with the ultimate goal of making evaluation serve as a cornerstone in guiding the responsible development of LLMs. We envision that this will channel their evolution into a direction that maximizes societal benefit while minimizing potential risks. A curated list of related papers has been publicly available at //github.com/tjunlp-lab/Awesome-LLMs-Evaluation-Papers.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司