亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent work has shown that the performance of machine learning models can vary substantially when models are evaluated on data drawn from a distribution that is close to but different from the training distribution. As a result, predicting model performance on unseen distributions is an important challenge. Our work connects techniques from domain adaptation and predictive uncertainty literature, and allows us to predict model accuracy on challenging unseen distributions without access to labeled data. In the context of distribution shift, distributional distances are often used to adapt models and improve their performance on new domains, however accuracy estimation, or other forms of predictive uncertainty, are often neglected in these investigations. Through investigating a wide range of established distributional distances, such as Frechet distance or Maximum Mean Discrepancy, we determine that they fail to induce reliable estimates of performance under distribution shift. On the other hand, we find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts. We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference. $DoC$ reduces predictive error by almost half ($46\%$) on several realistic and challenging distribution shifts, e.g., on the ImageNet-Vid-Robust and ImageNet-Rendition datasets.

相關內容

Test of independence is of fundamental importance in modern data analysis, with broad applications in variable selection, graphical models, and causal inference. When the data is high dimensional and the potential dependence signal is sparse, independence testing becomes very challenging without distributional or structural assumptions. In this paper we propose a general framework for independence testing by first fitting a classifier that distinguishes the joint and product distributions, and then testing the significance of the fitted classifier. This framework allows us to borrow the strength of the most advanced classification algorithms developed from the modern machine learning community, making it applicable to high dimensional, complex data. By combining a sample split and a fixed permutation, our test statistic has a universal, fixed Gaussian null distribution that is independent of the underlying data distribution. Extensive simulations demonstrate the advantages of the newly proposed test compared with existing methods. We further apply the new test to a single cell data set to test the independence between two types of single cell sequencing measurements, whose high dimensionality and sparsity make existing methods hard to apply.

Empirical science of neural scaling laws is a rapidly growing area of significant importance to the future of machine learning, particularly in the light of recent breakthroughs achieved by large-scale pre-trained models such as GPT-3, CLIP and DALL-e. Accurately predicting the neural network performance with increasing resources such as data, compute and model size provides a more comprehensive evaluation of different approaches across multiple scales, as opposed to traditional point-wise comparisons of fixed-size models on fixed-size benchmarks, and, most importantly, allows for focus on the best-scaling, and thus most promising in the future, approaches. In this work, we consider a challenging problem of few-shot learning in image classification, especially when the target data distribution in the few-shot phase is different from the source, training, data distribution, in a sense that it includes new image classes not encountered during training. Our current main goal is to investigate how the amount of pre-training data affects the few-shot generalization performance of standard image classifiers. Our key observations are that (1) such performance improvements are well-approximated by power laws (linear log-log plots) as the training set size increases, (2) this applies to both cases of target data coming from either the same or from a different domain (i.e., new classes) as the training data, and (3) few-shot performance on new classes converges at a faster rate than the standard classification performance on previously seen classes. Our findings shed new light on the relationship between scale and generalization.

Quantification is the research field that studies methods for counting the number of data points that belong to each class in an unlabeled sample. Traditionally, researchers in this field assume the availability of labelled observations for all classes to induce a quantification model. However, we often face situations where the number of classes is large or even unknown, or we have reliable data for a single class. When inducing a multi-class quantifier is infeasible, we are often concerned with estimates for a specific class of interest. In this context, we have proposed a novel setting known as One-class Quantification (OCQ). In contrast, Positive and Unlabeled Learning (PUL), another branch of Machine Learning, has offered solutions to OCQ, despite quantification not being the focal point of PUL. This article closes the gap between PUL and OCQ and brings both areas together under a unified view. We compare our method, Passive Aggressive Threshold (PAT), against PUL methods and show that PAT generally is the fastest and most accurate algorithm. PAT induces quantification models that can be reused to quantify different samples of data. We additionally introduce Exhaustive TIcE (ExTIcE), an improved version of the PUL algorithm Tree Induction for c Estimation (TIcE). We show that ExTIcE quantifies more accurately than PAT and the other assessed algorithms in scenarios where several negative observations are identical to the positive ones.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

While progress has been made on the visual question answering leaderboards, models often utilize spurious correlations and priors in datasets under the i.i.d. setting. As such, evaluation on out-of-distribution (OOD) test samples has emerged as a proxy for generalization. In this paper, we present \textit{MUTANT}, a training paradigm that exposes the model to perceptually similar, yet semantically distinct \textit{mutations} of the input, to improve OOD generalization, such as the VQA-CP challenge. Under this paradigm, models utilize a consistency-constrained training objective to understand the effect of semantic changes in input (question-image pair) on the output (answer). Unlike existing methods on VQA-CP, \textit{MUTANT} does not rely on the knowledge about the nature of train and test answer distributions. \textit{MUTANT} establishes a new state-of-the-art accuracy on VQA-CP with a $10.57\%$ improvement. Our work opens up avenues for the use of semantic input mutations for OOD generalization in question answering.

Although pretrained Transformers such as BERT achieve high accuracy on in-distribution examples, do they generalize to new distributions? We systematically measure out-of-distribution (OOD) generalization for various NLP tasks by constructing a new robustness benchmark with realistic distribution shifts. We measure the generalization of previous models including bag-of-words models, ConvNets, and LSTMs, and we show that pretrained Transformers' performance declines are substantially smaller. Pretrained transformers are also more effective at detecting anomalous or OOD examples, while many previous models are frequently worse than chance. We examine which factors affect robustness, finding that larger models are not necessarily more robust, distillation can be harmful, and more diverse pretraining data can enhance robustness. Finally, we show where future work can improve OOD robustness.

Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司