亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A practical speech audiometry tool is the digits-in-noise (DIN) test for hearing screening of populations of varying ages and hearing status. The test is usually conducted by a human supervisor (e.g., clinician), who scores the responses spoken by the listener, or online, where a software scores the responses entered by the listener. The test has 24 digit-triplets presented in an adaptive staircase procedure, resulting in a speech reception threshold (SRT). We propose an alternative automated DIN test setup that can evaluate spoken responses whilst conducted without a human supervisor, using the open-source automatic speech recognition toolkit, Kaldi-NL. Thirty self-reported normal-hearing Dutch adults (19-64 years) completed one DIN+Kaldi-NL test. Their spoken responses were recorded, and used for evaluating the transcript of decoded responses by Kaldi-NL. Study 1 evaluated the Kaldi-NL performance through its word error rate (WER), percentage of summed decoding errors regarding only digits found in the transcript compared to the total number of digits present in the spoken responses. Average WER across participants was 5.0% (range 0 - 48%, SD = 8.8%), with average decoding errors in three triplets per participant. Study 2 analysed the effect that triplets with decoding errors from Kaldi-NL had on the DIN test output (SRT), using bootstrapping simulations. Previous research indicated 0.70 dB as the typical within-subject SRT variability for normal-hearing adults. Study 2 showed that up to four triplets with decoding errors produce SRT variations within this range, suggesting that our proposed setup could be feasible for clinical applications.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Cognitive decision-making processes are crucial aspects of human behavior, influencing various personal and professional domains. This research delves into the application of differential equations in analyzing decision-making accuracy by leveraging eye-tracking data within a virtual industrial town setting. The study unveils a systematic approach to transforming raw data into a differential equation, essential for deciphering the relationship between eye movements during decision-making processes. Mathematical relationship extraction and variable-parameter definition pave the way for deriving a differential equation that encapsulates the growth of fixations on characters. The key factors in this equation encompass the fixation rate $(\lambda)$ and separation rate $(\mu)$, reflecting user interaction dynamics and their impact on decision-making complexities tied to user engagement with virtual characters. For a comprehensive grasp of decision dynamics, solving this differential equation requires initial fixation counts, fixation rate, and separation rate. The formulation of differential equations incorporates various considerations such as engagement duration, character-player distance, relative speed, and character attributes, enabling the representation of fixation changes, speed dynamics, distance variations, and the effects of character attributes. This comprehensive analysis not only enhances our comprehension of decision-making processes but also provides a foundational framework for predictive modeling and data-driven insights for future research and applications in cognitive science and virtual reality environments.

Parameter-efficient fine-tuning stands as the standard for efficiently fine-tuning large language and vision models on downstream tasks. Specifically, the efficiency of low-rank adaptation has facilitated the creation and sharing of hundreds of custom LoRA modules, each trained on distinct data from various downstream tasks. In this paper, we explore the composability of LoRA modules, examining if combining these pre-trained modules enhances generalization to unseen downstream tasks. Our investigation involves evaluating two approaches: (a) uniform composition, involving averaging upstream LoRA modules with equal weights, and (b) learned composition, where we learn the weights for each upstream module and perform weighted averaging. Our experimental results on both vision and language models reveal that in few-shot settings, where only a limited number of samples are available for the downstream task, both uniform and learned composition methods result in better transfer accuracy; outperforming full fine-tuning and training a LoRA from scratch. Moreover, in full-shot settings, learned composition performs comparably to regular LoRA training with significantly fewer number of trainable parameters. Our research unveils the potential of uniform composition for enhancing transferability in low-shot settings, without introducing additional learnable parameters.

This paper focuses on semi-supervised crowd counting, where only a small portion of the training data are labeled. We formulate the pixel-wise density value to regress as a probability distribution, instead of a single deterministic value. On this basis, we propose a semi-supervised crowd-counting model. Firstly, we design a pixel-wise distribution matching loss to measure the differences in the pixel-wise density distributions between the prediction and the ground truth; Secondly, we enhance the transformer decoder by using density tokens to specialize the forwards of decoders w.r.t. different density intervals; Thirdly, we design the interleaving consistency self-supervised learning mechanism to learn from unlabeled data efficiently. Extensive experiments on four datasets are performed to show that our method clearly outperforms the competitors by a large margin under various labeled ratio settings. Code will be released at //github.com/LoraLinH/Semi-supervised-Counting-via-Pixel-by-pixel-Density-Distribution-Modelling.

Text-to-video editing aims to edit the visual appearance of a source video conditional on textual prompts. A major challenge in this task is to ensure that all frames in the edited video are visually consistent. Most recent works apply advanced text-to-image diffusion models to this task by inflating 2D spatial attention in the U-Net into spatio-temporal attention. Although temporal context can be added through spatio-temporal attention, it may introduce some irrelevant information for each patch and therefore cause inconsistency in the edited video. In this paper, for the first time, we introduce optical flow into the attention module in the diffusion model's U-Net to address the inconsistency issue for text-to-video editing. Our method, FLATTEN, enforces the patches on the same flow path across different frames to attend to each other in the attention module, thus improving the visual consistency in the edited videos. Additionally, our method is training-free and can be seamlessly integrated into any diffusion-based text-to-video editing methods and improve their visual consistency. Experiment results on existing text-to-video editing benchmarks show that our proposed method achieves the new state-of-the-art performance. In particular, our method excels in maintaining the visual consistency in the edited videos.

The summarization capabilities of pretrained and large language models (LLMs) have been widely validated in general areas, but their use in scientific corpus, which involves complex sentences and specialized knowledge, has been less assessed. This paper presents conceptual and experimental analyses of scientific summarization, highlighting the inadequacies of traditional evaluation methods, such as $n$-gram, embedding comparison, and QA, particularly in providing explanations, grasping scientific concepts, or identifying key content. Subsequently, we introduce the Facet-aware Metric (FM), employing LLMs for advanced semantic matching to evaluate summaries based on different aspects. This facet-aware approach offers a thorough evaluation of abstracts by decomposing the evaluation task into simpler subtasks.Recognizing the absence of an evaluation benchmark in this domain, we curate a Facet-based scientific summarization Dataset (FD) with facet-level annotations. Our findings confirm that FM offers a more logical approach to evaluating scientific summaries. In addition, fine-tuned smaller models can compete with LLMs in scientific contexts, while LLMs have limitations in learning from in-context information in scientific domains. This suggests an area for future enhancement of LLMs.

Large Multimodal Models (LMMs) have shown promise in vision-language tasks but struggle with high-resolution input and detailed scene understanding. Addressing these challenges, we introduce Monkey to enhance LMM capabilities. Firstly, Monkey processes input images by dividing them into uniform patches, each matching the size (e.g., 448x448) used in the original training of the well-trained vision encoder. Equipped with individual adapter for each patch, Monkey can handle higher resolutions up to 1344x896 pixels, enabling the detailed capture of complex visual information. Secondly, it employs a multi-level description generation method, enriching the context for scene-object associations. This two-part strategy ensures more effective learning from generated data: the higher resolution allows for a more detailed capture of visuals, which in turn enhances the effectiveness of comprehensive descriptions. Extensive ablative results validate the effectiveness of our designs. Additionally, experiments on 18 datasets further demonstrate that Monkey surpasses existing LMMs in many tasks like Image Captioning and various Visual Question Answering formats. Specially, in qualitative tests focused on dense text question answering, Monkey has exhibited encouraging results compared with GPT4V. Code is available at //github.com/Yuliang-Liu/Monkey.

Despite the promising few-shot ability of large language models (LLMs), the standard paradigm of In-context Learning (ICL) suffers the disadvantages of susceptibility to selected demonstrations and the intricacy to generate these demonstrations. In this paper, we raise the fundamental question that whether human-generated demonstrations are necessary for ICL. To answer this question, we propose self-contemplation prompting strategy (SEC), a paradigm free from human-crafted demonstrations. The key point of SEC is that, instead of using hand-crafted examples as demonstrations in ICL, SEC asks LLMs to first create demonstrations on their own, based on which the final output is generated. SEC is a flexible framework and can be adapted to both the vanilla ICL and the chain-of-thought (CoT), but with greater ease: as the manual-generation process of both examples and rationale can be saved. Extensive experiments in arithmetic reasoning, commonsense reasoning, multi-task language understanding, and code generation benchmarks, show that SEC, which does not require hand-crafted demonstrations, significantly outperforms the zero-shot learning strategy, and achieves comparable results to ICL with hand-crafted demonstrations. This demonstrates that, for many tasks, contemporary LLMs possess a sufficient level of competence to exclusively depend on their own capacity for decision making, removing the need for external training data. Code is available at //github.com/ruili33/SEC.

In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Zero-shot Learning (ZSL), which aims to predict for those classes that have never appeared in the training data, has arisen hot research interests. The key of implementing ZSL is to leverage the prior knowledge of classes which builds the semantic relationship between classes and enables the transfer of the learned models (e.g., features) from training classes (i.e., seen classes) to unseen classes. However, the priors adopted by the existing methods are relatively limited with incomplete semantics. In this paper, we explore richer and more competitive prior knowledge to model the inter-class relationship for ZSL via ontology-based knowledge representation and semantic embedding. Meanwhile, to address the data imbalance between seen classes and unseen classes, we developed a generative ZSL framework with Generative Adversarial Networks (GANs). Our main findings include: (i) an ontology-enhanced ZSL framework that can be applied to different domains, such as image classification (IMGC) and knowledge graph completion (KGC); (ii) a comprehensive evaluation with multiple zero-shot datasets from different domains, where our method often achieves better performance than the state-of-the-art models. In particular, on four representative ZSL baselines of IMGC, the ontology-based class semantics outperform the previous priors e.g., the word embeddings of classes by an average of 12.4 accuracy points in the standard ZSL across two example datasets (see Figure 4).

北京阿比特科技有限公司