亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hyperspectral images (HSIs) contain rich spectral and spatial information. Motivated by the success of transformers in the field of natural language processing and computer vision where they have shown the ability to learn long range dependencies within input data, recent research has focused on using transformers for HSIs. However, current state-of-the-art hyperspectral transformers only tokenize the input HSI sample along the spectral dimension, resulting in the under-utilization of spatial information. Moreover, transformers are known to be data-hungry and their performance relies heavily on large-scale pretraining, which is challenging due to limited annotated hyperspectral data. Therefore, the full potential of HSI transformers has not been fully realized. To overcome these limitations, we propose a novel factorized spectral-spatial transformer that incorporates factorized self-supervised pretraining procedures, leading to significant improvements in performance. The factorization of the inputs allows the spectral and spatial transformers to better capture the interactions within the hyperspectral data cubes. Inspired by masked image modeling pretraining, we also devise efficient masking strategies for pretraining each of the spectral and spatial transformers. We conduct experiments on six publicly available datasets for HSI classification task and demonstrate that our model achieves state-of-the-art performance in all the datasets. The code for our model will be made available at //github.com/csiro-robotics/factoformer.

相關內容

The performance of Large Language Models (LLMs) degrades from the temporal drift between data used for model training and newer text seen during inference. One understudied avenue of language change causing data drift is the emergence of neologisms -- new word forms -- over time. We create a diverse resource of recent English neologisms by using several popular collection methods. We analyze temporal drift using neologisms by comparing sentences containing new words with near-identical sentences that replace neologisms with existing substitute words. Model performance is nearly halved in machine translation when a single neologism is introduced in a sentence. Motivated by these results, we construct a benchmark to evaluate LLMs' ability to generalize to neologisms with various natural language understanding tasks and model perplexity. Models with later knowledge cutoff dates yield lower perplexities and perform better in downstream tasks. LLMs are also affected differently based on the linguistic origins of words, indicating that neologisms are complex for static LLMs to address. We will release our benchmark and code for reproducing our experiments.

Large Language Models (LLMs) face significant deployment challenges due to their substantial memory requirements and the computational demands of auto-regressive text generation process. This paper addresses these challenges by focusing on the quantization of LLMs, a technique that reduces memory consumption by converting model parameters and activations into low-bit integers. We critically analyze the existing quantization approaches, identifying their limitations in balancing the accuracy and efficiency of the quantized LLMs. To advance beyond these limitations, we propose WKVQuant, a PTQ framework especially designed for quantizing weights and the key/value (KV) cache of LLMs. Specifically, we incorporates past-only quantization to improve the computation of attention. Additionally, we introduce two-dimensional quantization strategy to handle the distribution of KV cache, along with a cross-block reconstruction regularization for parameter optimization. Experiments show that WKVQuant achieves almost comparable memory savings to weight-activation quantization, while also approaching the performance of weight-only quantization.

In Ultrasound Localization Microscopy (ULM), achieving high-resolution images relies on the precise localization of contrast agent particles across a series of beamformed frames. However, our study uncovers an enormous potential: The process of delay-and-sum beamforming leads to an irreversible reduction of Radio-Frequency (RF) channel data, while its implications for localization remain largely unexplored. The rich contextual information embedded within RF wavefronts, including their hyperbolic shape and phase, offers great promise for guiding Deep Neural Networks (DNNs) in challenging localization scenarios. To fully exploit this data, we propose to directly localize scatterers in RF channel data. Our approach involves a custom super-resolution DNN using learned feature channel shuffling, non-maximum suppression, and a semi-global convolutional block for reliable and accurate wavefront localization. Additionally, we introduce a geometric point transformation that facilitates seamless mapping between RF and B-mode coordinate space. To understand the impact of beamforming on ULM, we validate the effectiveness of our method by conducting an extensive comparison with State-Of-The-Art (SOTA) techniques. We present the inaugural in vivo results from an RF-trained DNN, highlighting its real-world practicality. Our findings show that RF-ULM bridges the domain shift between synthetic and real datasets, offering a considerable advantage in terms of precision and complexity. To enable the broader research community to benefit from our findings, our code and the associated SOTA methods are made available at //github.com/hahnec/rf-ulm.

Recent LLM-driven visual agents mainly focus on solving image-based tasks, which limits their ability to understand dynamic scenes, making it far from real-life applications like guiding students in laboratory experiments and identifying their mistakes. Considering the video modality better reflects the ever-changing nature of real-world scenarios, we devise DoraemonGPT, a comprehensive and conceptually elegant system driven by LLMs to handle dynamic video tasks. Given a video with a question/task, DoraemonGPT begins by converting the input video into a symbolic memory that stores task-related attributes. This structured representation allows for spatial-temporal querying and reasoning by well-designed sub-task tools, resulting in concise intermediate results. Recognizing that LLMs have limited internal knowledge when it comes to specialized domains (e.g., analyzing the scientific principles underlying experiments), we incorporate plug-and-play tools to assess external knowledge and address tasks across different domains. Moreover, a novel LLM-driven planner based on Monte Carlo Tree Search is introduced to explore the large planning space for scheduling various tools. The planner iteratively finds feasible solutions by backpropagating the result's reward, and multiple solutions can be summarized into an improved final answer. We extensively evaluate DoraemonGPT's effectiveness on three benchmarks and challenging in-the-wild scenarios. Code will be released at: //github.com/z-x-yang/DoraemonGPT.

The rise of multimodal misinformation on social platforms poses significant challenges for individuals and societies. Its increased credibility and broader impact compared to textual misinformation make detection complex, requiring robust reasoning across diverse media types and profound knowledge for accurate verification. The emergence of Large Vision Language Model (LVLM) offers a potential solution to this problem. Leveraging their proficiency in processing visual and textual information, LVLM demonstrates promising capabilities in recognizing complex information and exhibiting strong reasoning skills. In this paper, we first investigate the potential of LVLM on multimodal misinformation detection. We find that even though LVLM has a superior performance compared to LLMs, its profound reasoning may present limited power with a lack of evidence. Based on these observations, we propose LEMMA: LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation. LEMMA leverages LVLM intuition and reasoning capabilities while augmenting them with external knowledge to enhance the accuracy of misinformation detection. Our method improves the accuracy over the top baseline LVLM by 7% and 13% on Twitter and Fakeddit datasets respectively.

This paper introduces the batch-parallel Compressed Packed Memory Array (CPMA), a compressed, dynamic, ordered set data structure based on the Packed Memory Array (PMA). Traditionally, batch-parallel sets are built on pointer-based data structures such as trees because pointer-based structures enable fast parallel unions via pointer manipulation. When compared with cache-optimized trees, PMAs were slower to update but faster to scan. The batch-parallel CPMA overcomes this tradeoff between updates and scans by optimizing for cache-friendliness. On average, the CPMA achieves 3x faster batch-insert throughput and 4x faster range-query throughput compared with compressed PaC-trees, a state-of-the-art batch-parallel set library based on cache-optimized trees. We further evaluate the CPMA compared with compressed PaC-trees and Aspen, a state-of-the-art system, on a real-world application of dynamic-graph processing. The CPMA is on average 1.2x faster on a suite of graph algorithms and 2x faster on batch inserts when compared with compressed PaC-trees. Furthermore, the CPMA is on average 1.3x faster on graph algorithms and 2x faster on batch inserts compared with Aspen.

Consecutive frames in a video contain redundancy, but they may also contain relevant complementary information for the detection task. The objective of our work is to leverage this complementary information to improve detection. Therefore, we propose a spatio-temporal fusion framework (STF). We first introduce multi-frame and single-frame attention modules that allow a neural network to share feature maps between nearby frames to obtain more robust object representations. Second, we introduce a dual-frame fusion module that merges feature maps in a learnable manner to improve them. Our evaluation is conducted on three different benchmarks including video sequences of moving road users. The performed experiments demonstrate that the proposed spatio-temporal fusion module leads to improved detection performance compared to baseline object detectors. Code is available at //github.com/noreenanwar/STF-module

We present, PEGASUS, a method for constructing personalized generative 3D face avatars from monocular video sources. As a compositional generative model, our model enables disentangled controls to selectively alter the facial attributes (e.g., hair or nose) of the target individual, while preserving the identity. We present two key approaches to achieve this goal. First, we present a method to construct a person-specific generative 3D avatar by building a synthetic video collection of the target identity with varying facial attributes, where the videos are synthesized by borrowing parts from diverse individuals from other monocular videos. Through several experiments, we demonstrate the superior performance of our approach by generating unseen attributes with high realism. Subsequently, we introduce a zero-shot approach to achieve the same generative modeling more efficiently by leveraging a previously constructed personalized generative model.

This paper introduces a novel neural audio codec targeting high waveform sampling rates and low bitrates named APCodec, which seamlessly integrates the strengths of parametric codecs and waveform codecs. The APCodec revolutionizes the process of audio encoding and decoding by concurrently handling the amplitude and phase spectra as audio parametric characteristics like parametric codecs. It is composed of an encoder and a decoder with the modified ConvNeXt v2 network as the backbone, connected by a quantizer based on the residual vector quantization (RVQ) mechanism. The encoder compresses the audio amplitude and phase spectra in parallel, amalgamating them into a continuous latent code at a reduced temporal resolution. This code is subsequently quantized by the quantizer. Ultimately, the decoder reconstructs the audio amplitude and phase spectra in parallel, and the decoded waveform is obtained by inverse short-time Fourier transform. To ensure the fidelity of decoded audio like waveform codecs, spectral-level loss, quantization loss, and generative adversarial network (GAN) based loss are collectively employed for training the APCodec. To support low-latency streamable inference, we employ feed-forward layers and causal convolutional layers in APCodec, incorporating a knowledge distillation training strategy to enhance the quality of decoded audio. Experimental results confirm that our proposed APCodec can encode 48 kHz audio at bitrate of just 6 kbps, with no significant degradation in the quality of the decoded audio. At the same bitrate, our proposed APCodec also demonstrates superior decoded audio quality and faster generation speed compared to well-known codecs, such as SoundStream, Encodec, HiFi-Codec and AudioDec.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

北京阿比特科技有限公司