The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
Deep neural networks are in the limelight of machine learning with their excellent performance in many data-driven applications. However, they can lead to inaccurate predictions when queried in out-of-distribution data points, which can have detrimental effects especially in sensitive domains, such as healthcare and transportation, where erroneous predictions can be very costly and/or dangerous. Subsequently, quantifying the uncertainty of the output of a neural network is often leveraged to evaluate the confidence of its predictions, and ensemble models have proved to be effective in measuring the uncertainty by utilizing the variance of predictions over a pool of models. In this paper, we propose a novel approach for uncertainty quantification via ensembles, called Random Activation Functions (RAFs) Ensemble, that aims at improving the ensemble diversity toward a more robust estimation, by accommodating each neural network with a different (random) activation function. Extensive empirical study demonstrates that RAFs Ensemble outperforms state-of-the-art ensemble uncertainty quantification methods on both synthetic and real-world datasets in a series of regression tasks.
Numerous neuro-symbolic approaches have recently been proposed typically with the goal of adding symbolic knowledge to the output layer of a neural network. Ideally, such losses maximize the probability that the neural network's predictions satisfy the underlying domain. Unfortunately, this type of probabilistic inference is often computationally infeasible. Neuro-symbolic approaches therefore commonly resort to fuzzy approximations of this probabilistic objective, sacrificing sound probabilistic semantics, or to sampling which is very seldom feasible. We approach the problem by first assuming the constraint decomposes conditioned on the features learned by the network. We iteratively strengthen our approximation, restoring the dependence between the constraints most responsible for degrading the quality of the approximation. This corresponds to computing the mutual information between pairs of constraints conditioned on the network's learned features, and may be construed as a measure of how well aligned the gradients of two distributions are. We show how to compute this efficiently for tractable circuits. We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles, observing that it improves upon the baselines while sidestepping intractability.
In reliable decision-making systems based on machine learning, models have to be robust to distributional shifts or provide the uncertainty of their predictions. In node-level problems of graph learning, distributional shifts can be especially complex since the samples are interdependent. To evaluate the performance of graph models, it is important to test them on diverse and meaningful distributional shifts. However, most graph benchmarks that consider distributional shifts for node-level problems focus mainly on node features, while data in graph problems is primarily defined by its structural properties. In this work, we propose a general approach for inducing diverse distributional shifts based on graph structure. We use this approach to create data splits according to several structural node properties: popularity, locality, and density. In our experiments, we thoroughly evaluate the proposed distributional shifts and show that they are quite challenging for existing graph models. We hope that the proposed approach will be helpful for the further development of reliable graph machine learning.
Equipping predicted segmentation with calibrated uncertainty is essential for safety-critical applications. In this work, we focus on capturing the data-inherent uncertainty (aka aleatoric uncertainty) in segmentation, typically when ambiguities exist in input images. Due to the high-dimensional output space and potential multiple modes in segmenting ambiguous images, it remains challenging to predict well-calibrated uncertainty for segmentation. To tackle this problem, we propose a novel mixture of stochastic experts (MoSE) model, where each expert network estimates a distinct mode of the aleatoric uncertainty and a gating network predicts the probabilities of an input image being segmented in those modes. This yields an efficient two-level uncertainty representation. To learn the model, we develop a Wasserstein-like loss that directly minimizes the distribution distance between the MoSE and ground truth annotations. The loss can easily integrate traditional segmentation quality measures and be efficiently optimized via constraint relaxation. We validate our method on the LIDC-IDRI dataset and a modified multimodal Cityscapes dataset. Results demonstrate that our method achieves the state-of-the-art or competitive performance on all metrics.
Estimating the entropy rate of discrete time series is a challenging problem with important applications in numerous areas including neuroscience, genomics, image processing and natural language processing. A number of approaches have been developed for this task, typically based either on universal data compression algorithms, or on statistical estimators of the underlying process distribution. In this work, we propose a fully-Bayesian approach for entropy estimation. Building on the recently introduced Bayesian Context Trees (BCT) framework for modelling discrete time series as variable-memory Markov chains, we show that it is possible to sample directly from the induced posterior on the entropy rate. This can be used to estimate the entire posterior distribution, providing much richer information than point estimates. We develop theoretical results for the posterior distribution of the entropy rate, including proofs of consistency and asymptotic normality. The practical utility of the method is illustrated on both simulated and real-world data, where it is found to outperform state-of-the-art alternatives.
Nearly all simulation-based games have environment parameters that affect incentives in the interaction but are not explicitly incorporated into the game model. To understand the impact of these parameters on strategic incentives, typical game-theoretic analysis involves selecting a small set of representative values, and constructing and analyzing separate game models for each value. We introduce a novel technique to learn a single model representing a family of closely related games that differ in the number of symmetric players or other ordinal environment parameters. Prior work trains a multi-headed neural network to output mixed-strategy deviation payoffs, which can be used to compute symmetric $\varepsilon$-Nash equilibria. We extend this work by making environment parameters into input dimensions of the regressor, enabling a single model to learn patterns which generalize across the parameter space. For continuous and discrete parameters, our results show that these generalized models outperform existing approaches, achieving better accuracy with far less data. This technique makes thorough analysis of the parameter space more tractable, and promotes analyses that capture relationships between parameters and incentives.
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning. In particular, we focus on characterizing the variance over values induced by a distribution over MDPs. Previous work upper bounds the posterior variance over values by solving a so-called uncertainty Bellman equation, but the over-approximation may result in inefficient exploration. We propose a new uncertainty Bellman equation whose solution converges to the true posterior variance over values and explicitly characterizes the gap in previous work. Moreover, our uncertainty quantification technique is easily integrated into common exploration strategies and scales naturally beyond the tabular setting by using standard deep reinforcement learning architectures. Experiments in difficult exploration tasks, both in tabular and continuous control settings, show that our sharper uncertainty estimates improve sample-efficiency.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.
To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.