亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pre-transformed polar codes (PTPCs) form a class of codes that perform close to the finite-length capacity bounds. The minimum distance and the number of minimum weight codewords are two decisive properties for their performance. In this work, we propose an efficient algorithm to determine the number of minimum weight codewords of general PTPCs, which eliminates all redundant visits of nodes of the search tree, reducing the computational complexity from state-of-the-art algorithms typically by several orders of magnitude. This reduction in complexity allows, for the first time, the minimum distance properties to be directly considered in the code design of PTPCs. The algorithm is demonstrated for randomly pre-transformed Reed-Muller (RM) codes and polarization-adjusted convolutional (PAC) codes. Further, we design optimal convolutional polynomials for PAC codes with this algorithm, minimizing the number of minimum weight codewords.

相關內容

Mixture of Experts (MoE) models have emerged as a primary solution for reducing the computational cost of Large Language Models. In this work, we analyze their scaling properties, incorporating an expanded range of variables. Specifically, we introduce a new hyperparameter, granularity, whose adjustment enables precise control over the size of the experts. Building on this, we establish scaling laws for fine-grained MoE, taking into account the number of training tokens, model size, and granularity. Leveraging these laws, we derive the optimal training configuration for a given computational budget. Our findings not only show that MoE models consistently outperform dense Transformers but also highlight that the efficiency gap between dense and MoE models widens as we scale up the model size and training budget. Furthermore, we demonstrate that the common practice of setting the size of experts in MoE to mirror the feed-forward layer is not optimal at almost any computational budget.

Arora & Ge introduced a noise-free polynomial system to compute the secret of a Learning With Errors (LWE) instance via linearization. Albrecht et al. later utilized the Arora-Ge polynomial model to study the complexity of Gr\"obner basis computations on LWE polynomial systems under the assumption of semi-regularity. In this paper we revisit the Arora-Ge polynomial and prove that it satisfies a genericity condition recently introduced by Caminata & Gorla, called being in generic coordinates. For polynomial systems in generic coordinates one can always estimate the complexity of DRL Gr\"obner basis computations in terms of the Castelnuovo-Mumford regularity and henceforth also via the Macaulay bound. Moreover, we generalize the Gr\"obner basis algorithm of Semaev & Tenti to arbitrary polynomial systems with a finite degree of regularity. In particular, existence of this algorithm yields another approach to estimate the complexity of DRL Gr\"obner basis computations in terms of the degree of regularity. In practice, the degree of regularity of LWE polynomial systems is not known, though one can always estimate the lowest achievable degree of regularity. Consequently, from a designer's worst case perspective this approach yields sub-exponential complexity estimates for general, binary secret, and binary error LWE. In recent works by Dachman-Soled et al. the hardness of LWE in the presence of side information was analyzed. Utilizing their framework we discuss how hints can be incorporated into LWE polynomial systems and how they affect the complexity of Gr\"obner basis computations.

Segmentations are crucial in medical imaging to obtain morphological, volumetric, and radiomics biomarkers. Manual segmentation is accurate but not feasible in the radiologist's clinical workflow, while automatic segmentation generally obtains sub-par performance. We therefore developed a minimally interactive deep learning-based segmentation method for soft-tissue tumors (STTs) on CT and MRI. The method requires the user to click six points near the tumor's extreme boundaries. These six points are transformed into a distance map and serve, with the image, as input for a Convolutional Neural Network. For training and validation, a multicenter dataset containing 514 patients and nine STT types in seven anatomical locations was used, resulting in a Dice Similarity Coefficient (DSC) of 0.85$\pm$0.11 (mean $\pm$ standard deviation (SD)) for CT and 0.84$\pm$0.12 for T1-weighted MRI, when compared to manual segmentations made by expert radiologists. Next, the method was externally validated on a dataset including five unseen STT phenotypes in extremities, achieving 0.81$\pm$0.08 for CT, 0.84$\pm$0.09 for T1-weighted MRI, and 0.88\pm0.08 for previously unseen T2-weighted fat-saturated (FS) MRI. In conclusion, our minimally interactive segmentation method effectively segments different types of STTs on CT and MRI, with robust generalization to previously unseen phenotypes and imaging modalities.

The B-spline copula function is defined by a linear combination of elements of the normalized B-spline basis. We develop a modified EM algorithm, to maximize the penalized log-likelihood function, wherein we use the smoothly clipped absolute deviation (SCAD) penalty function for the penalization term. We conduct simulation studies to demonstrate the stability of the proposed numerical procedure, show that penalization yields estimates with smaller mean-square errors when the true parameter matrix is sparse, and provide methods for determining tuning parameters and for model selection. We analyze as an example a data set consisting of birth and death rates from 237 countries, available at the website, ''Our World in Data,'' and we estimate the marginal density and distribution functions of those rates together with all parameters of our B-spline copula model.

Reinforcement Learning from Human Feedback (RLHF) learns from the preference signal provided by a probabilistic preference model, which takes a prompt and two responses as input, and produces a score indicating the preference of one response against another. So far, the most popular RLHF paradigm is reward-based, which starts with an initial step of reward modeling, and the constructed reward is then used to provide a reward signal for the subsequent reward optimization stage. However, the existence of a reward function is a strong assumption and the reward-based RLHF is limited in expressivity and cannot capture the real-world complicated human preference. In this work, we provide theoretical insights for a recently proposed learning paradigm, Nash learning from human feedback (NLHF), which considered a general preference model and formulated the alignment process as a game between two competitive LLMs. The learning objective is to find a policy that consistently generates responses preferred over any competing policy while staying close to the initial model. The objective is defined as the Nash equilibrium (NE) of the KL-regularized preference model. We aim to make the first attempt to study the theoretical learnability of the KL-regularized NLHF by considering both offline and online settings. For the offline learning from a pre-collected dataset, we propose algorithms that are efficient under suitable coverage conditions of the dataset. For batch online learning from iterative interactions with a preference oracle, our proposed algorithm enjoys a finite sample guarantee under the structural condition of the underlying preference model. Our results connect the new NLHF paradigm with traditional RL theory, and validate the potential of reward-model-free learning under general preference.

We propose a novel nonparametric sequential test for composite hypotheses for means of multiple data streams. Our proposed method, \emph{peeking with expectation-based averaged capital} (PEAK), builds upon the testing-as-betting framework and provides a non-asymptotic $\alpha$-level test across any stopping time. PEAK is computationally tractable and efficiently rejects hypotheses that are incorrect across all potential distributions that satisfy our nonparametric assumption, enabling joint composite hypothesis testing on multiple streams of data. We numerically validate our theoretical findings under the best arm identification and threshold identification in the bandit setting, illustrating the computational efficiency of our method against state-of-the-art testing methods.

Gender-neutral translation (GNT) that avoids biased and undue binary assumptions is a pivotal challenge for the creation of more inclusive translation technologies. Advancements for this task in Machine Translation (MT), however, are hindered by the lack of dedicated parallel data, which are necessary to adapt MT systems to satisfy neutral constraints. For such a scenario, large language models offer hitherto unforeseen possibilities, as they come with the distinct advantage of being versatile in various (sub)tasks when provided with explicit instructions. In this paper, we explore this potential to automate GNT by comparing MT with the popular GPT-4 model. Through extensive manual analyses, our study empirically reveals the inherent limitations of current MT systems in generating GNTs and provides valuable insights into the potential and challenges associated with prompting for neutrality.

Natural policy gradient (NPG) methods with entropy regularization achieve impressive empirical success in reinforcement learning problems with large state-action spaces. However, their convergence properties and the impact of entropy regularization remain elusive in the function approximation regime. In this paper, we establish finite-time convergence analyses of entropy-regularized NPG with linear function approximation under softmax parameterization. In particular, we prove that entropy-regularized NPG with averaging satisfies the \emph{persistence of excitation} condition, and achieves a fast convergence rate of $\tilde{O}(1/T)$ up to a function approximation error in regularized Markov decision processes. This convergence result does not require any a priori assumptions on the policies. Furthermore, under mild regularity conditions on the concentrability coefficient and basis vectors, we prove that entropy-regularized NPG exhibits \emph{linear convergence} up to a function approximation error.

Quantum error correcting codes are of primary interest for the evolution towards quantum computing and quantum Internet. We analyze the performance of stabilizer codes, one of the most important classes for practical implementations, on both symmetric and asymmetric quantum channels. To this aim, we first derive the weight enumerator (WE) for the undetectable errors based on the quantum MacWilliams identities. The WE is then used to evaluate tight upper bounds on the error rate of CSS quantum codes with minimum weight decoding. For surface codes we also derive a simple closed form expression of the bounds over the depolarizing channel. Finally, we introduce a novel approach that combines the knowledge of WE with a logical operator analysis. This method allows the derivation of the exact asymptotic performance for short codes. For example, on a depolarizing channel with physical error rate $\rho \to 0$ it is found that the logical error rate $\rho_\mathrm{L}$ is asymptotically $\rho_\mathrm{L} \approx 16 \rho^2$ for the $[[9,1,3]]$ Shor code, $\rho_\mathrm{L} \approx 16.3 \rho^2$ for the $[[7,1,3]]$ Steane code, $\rho_\mathrm{L} \approx 18.7 \rho^2$ for the $[[13,1,3]]$ surface code, and $\rho_\mathrm{L} \approx 149.3 \rho^3$ for the $[[41,1,5]]$ surface code. For larger codes our bound provides $\rho_\mathrm{L} \approx 1215 \rho^4$ and $\rho_\mathrm{L} \approx 663 \rho^5$ for the $[[85,1,7]]$ and the $[[181,1,10]]$ surface codes, respectively.

High-resolution semantic segmentation requires substantial computational resources. Traditional approaches in the field typically downscale the input images before processing and then upscale the low-resolution outputs back to their original dimensions. While this strategy effectively identifies broad regions, it often misses finer details. In this study, we demonstrate that a streamlined model capable of directly producing high-resolution segmentations can match the performance of more complex systems that generate lower-resolution results. By simplifying the network architecture, we enable the processing of images at their native resolution. Our approach leverages a bottom-up information propagation technique across various scales, which we have empirically shown to enhance segmentation accuracy. We have rigorously tested our method using leading-edge semantic segmentation datasets. Specifically, for the Cityscapes dataset, we further boost accuracy by applying the Noisy Student Training technique.

北京阿比特科技有限公司