亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Analysis of high-dimensional data, where the number of covariates is larger than the sample size, is a topic of current interest. In such settings, an important goal is to estimate the signal level $\tau^2$ and noise level $\sigma^2$, i.e., to quantify how much variation in the response variable can be explained by the covariates, versus how much of the variation is left unexplained. This thesis considers the estimation of these quantities in a semi-supervised setting, where for many observations only the vector of covariates $X$ is given with no responses $Y$. Our main research question is: how can one use the unlabeled data to better estimate $\tau^2$ and $\sigma^2$? We consider two frameworks: a linear regression model and a linear projection model in which linearity is not assumed. In the first framework, while linear regression is used, no sparsity assumptions on the coefficients are made. In the second framework, the linearity assumption is also relaxed and we aim to estimate the signal and noise levels defined by the linear projection. We first propose a naive estimator which is unbiased and consistent, under some assumptions, in both frameworks. We then show how the naive estimator can be improved by using zero-estimators, where a zero-estimator is a statistic arising from the unlabeled data, whose expected value is zero. In the first framework, we calculate the optimal zero-estimator improvement and discuss ways to approximate the optimal improvement. In the second framework, such optimality does no longer hold and we suggest two zero-estimators that improve the naive estimator although not necessarily optimally. Furthermore, we show that our approach reduces the variance for general initial estimators and we present an algorithm that potentially improves any initial estimator. Lastly, we consider four datasets and study the performance of our suggested methods.

相關內容

In statistical inference, a discrepancy between the parameter-to-observable map that generates the data and the parameter-to-observable map that is used for inference can lead to misspecified likelihoods and thus to incorrect estimates. In many inverse problems, the parameter-to-observable map is the composition of a linear state-to-observable map called an `observation operator' and a possibly nonlinear parameter-to-state map called the `model'. We consider such Bayesian inverse problems where the discrepancy in the parameter-to-observable map is due to the use of an approximate model that differs from the best model, i.e. to nonzero `model error'. Multiple approaches have been proposed to address such discrepancies, each leading to a specific posterior. We show how to use local Lipschitz stability estimates of posteriors with respect to likelihood perturbations to bound the Kullback--Leibler divergence of the posterior of each approach with respect to the posterior associated to the best model. Our bounds lead to criteria for choosing observation operators that mitigate the effect of model error for Bayesian inverse problems of this type. We illustrate the feasibility of one such criterion on an advection-diffusion-reaction PDE inverse problem, and use this example to discuss the importance and challenges of model error-aware inference.

This work considers Bayesian experimental design for the inverse boundary value problem of linear elasticity in a two-dimensional setting. The aim is to optimize the positions of compactly supported pressure activations on the boundary of the examined body in order to maximize the value of the resulting boundary deformations as data for the inverse problem of reconstructing the Lam\'e parameters inside the object. We resort to a linearized measurement model and adopt the framework of Bayesian experimental design, under the assumption that the prior and measurement noise distributions are mutually independent Gaussians. This enables the use of the standard Bayesian A-optimality criterion for deducing optimal positions for the pressure activations. The (second) derivatives of the boundary measurements with respect to the Lam\'e parameters and the positions of the boundary pressure activations are deduced to allow minimizing the corresponding objective function, i.e., the trace of the covariance matrix of the posterior distribution, by a gradient-based optimization algorithm. Two-dimensional numerical experiments are performed to demonstrate the functionality of our approach.

Bayesian binary regression is a prosperous area of research due to the computational challenges encountered by currently available methods either for high-dimensional settings or large datasets, or both. In the present work, we focus on the expectation propagation (EP) approximation of the posterior distribution in Bayesian probit regression under a multivariate Gaussian prior distribution. Adapting more general derivations in Anceschi et al. (2023), we show how to leverage results on the extended multivariate skew-normal distribution to derive an efficient implementation of the EP routine having a per-iteration cost that scales linearly in the number of covariates. This makes EP computationally feasible also in challenging high-dimensional settings, as shown in a detailed simulation study.

Recently, a stability theory has been developed to study the linear stability of modified Patankar--Runge--Kutta (MPRK) schemes. This stability theory provides sufficient conditions for a fixed point of an MPRK scheme to be stable as well as for the convergence of an MPRK scheme towards the steady state of the corresponding initial value problem, whereas the main assumption is that the initial value is sufficiently close to the steady state. Initially, numerical experiments in several publications indicated that these linear stability properties are not only local, but even global, as is the case for general linear methods. Recently, however, it was discovered that the linear stability of the MPDeC(8) scheme is indeed only local in nature. Our conjecture is that this is a result of negative Runge--Kutta (RK) parameters of MPDeC(8) and that linear stability is indeed global, if the RK parameters are nonnegative. To support this conjecture, we examine the family of MPRK22($\alpha$) methods with negative RK parameters and show that even among these methods there are methods for which the stability properties are only local. However, this local linear stability is not observed for MPRK22($\alpha$) schemes with nonnegative Runge-Kutta parameters.

The non-identifiability of the competing risks model requires researchers to work with restrictions on the model to obtain informative results. We present a new identifiability solution based on an exclusion restriction. Many areas of applied research use methods that rely on exclusion restrcitions. It appears natural to also use them for the identifiability of competing risks models. By imposing the exclusion restriction couple with an Archimedean copula, we are able to avoid any parametric restriction on the marginal distributions. We introduce a semiparametric estimation approach for the nonparametric marginals and the parametric copula. Our simulation results demonstrate the usefulness of the suggested model, as the degree of risk dependence can be estimated without parametric restrictions on the marginal distributions.

Applying parallel-in-time algorithms to multiscale Hamiltonian systems to obtain stable long time simulations is very challenging. In this paper, we present novel data-driven methods aimed at improving the standard parareal algorithm developed by Lion, Maday, and Turinici in 2001, for multiscale Hamiltonian systems. The first method involves constructing a correction operator to improve a given inaccurate coarse solver through solving a Procrustes problem using data collected online along parareal trajectories. The second method involves constructing an efficient, high-fidelity solver by a neural network trained with offline generated data. For the second method, we address the issues of effective data generation and proper loss function design based on the Hamiltonian function. We show proof-of-concept by applying the proposed methods to a Fermi-Pasta-Ulum (FPU) problem. The numerical results demonstrate that the Procrustes parareal method is able to produce solutions that are more stable in energy compared to the standard parareal. The neural network solver can achieve comparable or better runtime performance compared to numerical solvers of similar accuracy. When combined with the standard parareal algorithm, the improved neural network solutions are slightly more stable in energy than the improved numerical coarse solutions.

This paper addresses the estimation of the second-order structure of a manifold cross-time random field (RF) displaying spatially varying Long Range Dependence (LRD), adopting the functional time series framework introduced in Ruiz-Medina (2022). Conditions for the asymptotic unbiasedness of the integrated periodogram operator in the Hilbert-Schmidt operator norm are derived beyond structural assumptions. Weak-consistent estimation of the long-memory operator is achieved under a semiparametric functional spectral framework in the Gaussian context. The case where the projected manifold process can display Short Range Dependence (SRD) and LRD at different manifold scales is also analyzed. The performance of both estimation procedures is illustrated in the simulation study, in the context of multifractionally integrated spherical functional autoregressive-moving average (SPHARMA(p,q)) processes.

Determining the number of factors in high-dimensional factor modeling is essential but challenging, especially when the data are heavy-tailed. In this paper, we introduce a new estimator based on the spectral properties of Spearman sample correlation matrix under the high-dimensional setting, where both dimension and sample size tend to infinity proportionally. Our estimator is robust against heavy tails in either the common factors or idiosyncratic errors. The consistency of our estimator is established under mild conditions. Numerical experiments demonstrate the superiority of our estimator compared to existing methods.

Hawkes processes are often applied to model dependence and interaction phenomena in multivariate event data sets, such as neuronal spike trains, social interactions, and financial transactions. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is generally a computationally expensive task, all the more with Bayesian estimation methods. In particular, for generalised nonlinear Hawkes processes, Monte-Carlo Markov Chain methods applied to compute the doubly intractable posterior distribution are not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we first unify existing variational Bayes approaches under a general nonparametric inference framework, and analyse the asymptotic properties of these methods under easily verifiable conditions on the prior, the variational class, and the nonlinear model. Secondly, we propose a novel sparsity-inducing procedure, and derive an adaptive mean-field variational algorithm for the popular sigmoid Hawkes processes. Our algorithm is parallelisable and therefore computationally efficient in high-dimensional setting. Through an extensive set of numerical simulations, we also demonstrate that our procedure is able to adapt to the dimensionality of the parameter of the Hawkes process, and is partially robust to some type of model mis-specification.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司