亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Digital twins hold substantial promise in many applications, but rigorous procedures for assessing their accuracy are essential for their widespread deployment in safety-critical settings. By formulating this task within the framework of causal inference, we show that attempts to certify the correctness of a twin using real-world observational data are unsound unless potentially tenuous assumptions are made about the data-generating process. To avoid these assumptions, we propose an assessment strategy that instead aims to find cases where the twin is not correct, and present a general-purpose statistical procedure for doing so that may be used across a wide variety of applications and twin models. Our approach yields reliable and actionable information about the twin under minimal assumptions about the twin and the real-world process of interest. We demonstrate the effectiveness of our methodology via a large-scale case study involving sepsis modelling within the Pulse Physiology Engine, which we assess using the MIMIC-III dataset of ICU patients.

相關內容

Processing 是一門開源編(bian)程(cheng)語言和(he)與之配套的集成開發環境(IDE)的名稱。Processing 在電(dian)子藝(yi)術和(he)視覺(jue)設(she)計社(she)區被(bei)用來(lai)教授編(bian)程(cheng)基礎,并運(yun)用于大(da)量的新媒體和(he)互動(dong)藝(yi)術作(zuo)品中。

We prove a tight upper bound on the variance of the priority sampling method (aka sequential Poisson sampling). Our proof is significantly shorter and simpler than the original proof given by Mario Szegedy at STOC 2006, which resolved a conjecture by Duffield, Lund, and Thorup.

The design of personalized cranial implants is a challenging and tremendous task that has become a hot topic in terms of process automation with the use of deep learning techniques. The main challenge is associated with the high diversity of possible cranial defects. The lack of appropriate data sources negatively influences the data-driven nature of deep learning algorithms. Hence, one of the possible solutions to overcome this problem is to rely on synthetic data. In this work, we propose three volumetric variations of deep generative models to augment the dataset by generating synthetic skulls, i.e. Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), WGAN-GP hybrid with Variational Autoencoder pretraining (VAE/WGAN-GP) and Introspective Variational Autoencoder (IntroVAE). We show that it is possible to generate dozens of thousands of defective skulls with compatible defects that achieve a trade-off between defect heterogeneity and the realistic shape of the skull. We evaluate obtained synthetic data quantitatively by defect segmentation with the use of V-Net and qualitatively by their latent space exploration. We show that the synthetically generated skulls highly improve the segmentation process compared to using only the original unaugmented data. The generated skulls may improve the automatic design of personalized cranial implants for real medical cases.

Even though the analysis of unsteady 2D flow fields is challenging, fluid mechanics experts generally have an intuition on where in the simulation domain specific features are expected. Using this intuition, showing similar regions enables the user to discover flow patterns within the simulation data. When focusing on similarity, a solid mathematical framework for a specific flow pattern is not required. We propose a technique that visualizes similar and dissimilar regions with respect to a region selected by the user. Using infinitesimal strain theory, we capture the strain and rotation progression and therefore the dynamics of fluid parcels along pathlines, which we encode as distributions. We then apply the Jensen-Shannon divergence to compute the (dis)similarity between pathline dynamics originating in a user-defined flow region and the pathline dynamics of the flow field. We validate our method by applying it to two simulation datasets of two-dimensional unsteady flows. Our results show that our approach is suitable for analyzing the similarity of time-dependent flow fields.

Maximum mean discrepancy (MMD) has enjoyed a lot of success in many machine learning and statistical applications, including non-parametric hypothesis testing, because of its ability to handle non-Euclidean data. Recently, it has been demonstrated in Balasubramanian et al.(2021) that the goodness-of-fit test based on MMD is not minimax optimal while a Tikhonov regularized version of it is, for an appropriate choice of the regularization parameter. However, the results in Balasubramanian et al. (2021) are obtained under the restrictive assumptions of the mean element being zero, and the uniform boundedness condition on the eigenfunctions of the integral operator. Moreover, the test proposed in Balasubramanian et al. (2021) is not practical as it is not computable for many kernels. In this paper, we address these shortcomings and extend the results to general spectral regularizers that include Tikhonov regularization.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.

Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. Finally, we also describe how attention has been used to improve the interpretability of neural networks. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

北京阿比特科技有限公司