亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The CODECO Experimentation Framework is an open-source solution designed for the rapid experimentation of Kubernetes-based edge cloud deployments. It adopts a microservice-based architecture and introduces innovative abstractions for (i) the holistic deployment of Kubernetes clusters and associated applications, starting from the VM allocation level; (ii) declarative cross-layer experiment configuration; and (iii) automation features covering the entire experimental process, from the configuration up to the results visualization. We present proof-of-concept results that demonstrate the above capabilities in three distinct contexts: (i) a comparative evaluation of various network fabrics across different edge-oriented Kubernetes distributions; (ii) the automated deployment of EdgeNet, which is a complex edge cloud orchestration system; and (iii) an assessment of anomaly detection (AD) workflows tailored for edge environments.

相關內容

The Age of Incorrect Information (AoII) is studied within the context of remote monitoring a Markov source using variable-length stop-feedback (VLSF) coding. Leveraging recent results on the non-asymptotic channel coding rate, we consider sources with small cardinality, where feedback is non-instantaneous as the transmitted information and feedback message have comparable lengths. We focus on the feedback sequence, i.e. the times of feedback transmissions, and derive AoII-optimal and delay-optimal feedback sequences. Our results showcase the impact of the feedback sequence on the AoII, revealing that a lower average delay does not necessarily correspond to a lower average AoII. We discuss the implications of our findings and suggest directions for coding scheme design.

Computed Tomography (CT) is a prominent example of Imaging Inverse Problem highlighting the unrivaled performances of data-driven methods in degraded measurements setups like sparse X-ray projections. Although a significant proportion of deep learning approaches benefit from large supervised datasets, they cannot generalize to new experimental setups. In contrast, fully unsupervised techniques, most notably using score-based generative models, have recently demonstrated similar or better performances compared to supervised approaches while being flexible at test time. However, their use cases are limited as they need considerable amounts of training data to have good generalization properties. Another unsupervised approach taking advantage of the implicit natural bias of deep convolutional networks, Deep Image Prior, has recently been adapted to solve sparse CT by reparameterizing the reconstruction problem. Although this methodology does not require any training dataset, it enforces a weaker prior on the reconstructions when compared to data-driven methods. To fill the gap between these two strategies, we propose an unsupervised conditional approach to the Generative Latent Optimization framework (cGLO). Similarly to DIP, without any training dataset, cGLO benefits from the structural bias of a decoder network. However, the prior is further reinforced as the effect of a likelihood objective shared between multiple slices being reconstructed simultaneously through the same decoder network. In addition, the parameters of the decoder may be initialized on an unsupervised, and eventually very small, training dataset to enhance the reconstruction. The resulting approach is tested on full-dose sparse-view CT using multiple training dataset sizes and varying numbers of viewing angles.

On July 5, 2022, the National Institute of Standards and Technology announced four possible post-quantum cryptography standards, three of them are based on lattice theory and the other one is based on Hash function. It is well-known that the security of the lattice cryptography relies on the hardness of the shortest vector problem (SVP) and the closest vector problem (CVP). In fact, the SVP is a sphere packing problem and the CVP is a sphere covering problem. Furthermore, both SVP and CVP are equivalent to arithmetic problems of positive definite quadratic forms. This paper will briefly introduce the post-quantum cryptography and show its connections with sphere packing, sphere covering, and positive definite quadratic forms.

PyLaia is one of the most popular open-source software for Automatic Text Recognition (ATR), delivering strong performance in terms of speed and accuracy. In this paper, we outline our recent contributions to the PyLaia library, focusing on the incorporation of reliable confidence scores and the integration of statistical language modeling during decoding. Our implementation provides an easy way to combine PyLaia with n-grams language models at different levels. One of the highlights of this work is that language models are completely auto-tuned: they can be built and used easily without any expert knowledge, and without requiring any additional data. To demonstrate the significance of our contribution, we evaluate PyLaia's performance on twelve datasets, both with and without language modelling. The results show that decoding with small language models improves the Word Error Rate by 13% and the Character Error Rate by 12% in average. Additionally, we conduct an analysis of confidence scores and highlight the importance of calibration techniques. Our implementation is publicly available in the official PyLaia repository at //gitlab.teklia.com/atr/pylaia, and twelve open-source models are released on Hugging Face.

Information Extraction processes in handwritten documents tend to rely on obtaining an automatic transcription and performing Named Entity Recognition (NER) over such transcription. For this reason, in publicly available datasets, the performance of the systems is usually evaluated with metrics particular to each dataset. Moreover, most of the metrics employed are sensitive to reading order errors. Therefore, they do not reflect the expected final application of the system and introduce biases in more complex documents. In this paper, we propose and publicly release a set of reading order independent metrics tailored to Information Extraction evaluation in handwritten documents. In our experimentation, we perform an in-depth analysis of the behavior of the metrics to recommend what we consider to be the minimal set of metrics to evaluate a task correctly.

There is an increasing level of interest in open-endedness in the recent literature of Artificial Life and Artificial Intelligence. We previously proposed the cardinality leap of possibility spaces as a promising mechanism to facilitate open-endedness in artificial evolutionary systems, and demonstrated its effectiveness using Hash Chemistry, an artificial chemistry model that used a hash function as a universal fitness evaluator. However, the spatial nature of Hash Chemistry came with extensive computational costs involved in its simulation, and the particle density limit imposed to prevent explosion of computational costs prevented unbounded growth in complexity of higher-order entities. To address these limitations, here we propose a simpler non-spatial variant of Hash Chemistry in which spatial proximity of particles are represented explicitly in the form of multisets. This model modification achieved a significant reduction of computational costs in simulating the model. Results of numerical simulations showed much more significant unbounded growth in both maximal and average sizes of replicating higher-order entities than the original model, demonstrating the effectiveness of this non-spatial model as a minimalistic example of open-ended evolutionary systems.

Large Vision-Language Models (LVLMs) are gaining traction for their remarkable ability to process and integrate visual and textual data. Despite their popularity, the capacity of LVLMs to generate precise, fine-grained textual descriptions has not been fully explored. This study addresses this gap by focusing on \textit{distinctiveness} and \textit{fidelity}, assessing how models like Open-Flamingo, IDEFICS, and MiniGPT-4 can distinguish between similar objects and accurately describe visual features. We proposed the Textual Retrieval-Augmented Classification (TRAC) framework, which, by leveraging its generative capabilities, allows us to delve deeper into analyzing fine-grained visual description generation. This research provides valuable insights into the generation quality of LVLMs, enhancing the understanding of multimodal language models. Notably, MiniGPT-4 stands out for its better ability to generate fine-grained descriptions, outperforming the other two models in this aspect. The code is provided at \url{//anonymous.4open.science/r/Explore_FGVDs-E277}.

Advancements in adapting deep convolution architectures for Spiking Neural Networks (SNNs) have significantly enhanced image classification performance and reduced computational burdens. However, the inability of Multiplication-Free Inference (MFI) to align with attention and transformer mechanisms, which are critical to superior performance on high-resolution vision tasks, imposing limitations on these gains. To address this, our research explores a new pathway, drawing inspiration from the progress made in Multi-Layer Perceptrons (MLPs). We propose an innovative spiking MLP architecture that uses batch normalization to retain MFI compatibility and introducing a spiking patch encoding layer to enhance local feature extraction capabilities. As a result, we establish an efficient multi-stage spiking MLP network that blends effectively global receptive fields with local feature extraction for comprehensive spike-based computation. Without relying on pre-training or sophisticated SNN training techniques, our network secures a top-1 accuracy of 66.39% on the ImageNet-1K dataset, surpassing the directly trained spiking ResNet-34 by 2.67%. Furthermore, we curtail computational costs, model parameters, and simulation steps. An expanded version of our network compares with the performance of the spiking VGG-16 network with a 71.64% top-1 accuracy, all while operating with a model capacity 2.1 times smaller. Our findings highlight the potential of our deep SNN architecture in effectively integrating global and local learning abilities. Interestingly, the trained receptive field in our network mirrors the activity patterns of cortical cells. Source codes are publicly accessible at //github.com/EMI-Group/mixer-snn.

This work initiates the study of a beyond-diagonal reconfigurable intelligent surface (BD-RIS)-aided transmitter architecture for integrated sensing and communication (ISAC) in the millimeter-wave (mmWave) frequency band. Deploying BD-RIS at the transmitter side not only alleviates the need for extensive fully digital radio frequency (RF) chains but also enhances both communication and sensing performance. These benefits are facilitated by the additional design flexibility introduced by the fully-connected scattering matrix of BD-RIS. To achieve the aforementioned benefits, in this work, we propose an efficient two-stage algorithm to design the digital beamforming of the transmitter and the scattering matrix of the BD-RIS with the aim of jointly maximizing the sum rate for multiple communication users and minimizing the largest eigenvalue of the Cramer-Rao bound (CRB) matrix for multiple sensing targets. Numerical results show that the transmitter-side BD-RIS-aided mmWave ISAC outperforms the conventional diagonal-RIS-aided ones in both communication and sensing performance.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司