亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, inference privacy has attracted increasing attention. The inference privacy concern arises most notably in the widely deployed edge-cloud video analytics systems, where the cloud needs the videos captured from the edge. The video data can contain sensitive information and subject to attack when they are transmitted to the cloud for inference. Many privacy protection schemes have been proposed. Yet, the performance of a scheme needs to be determined by experiments or inferred by analyzing the specific case. In this paper, we propose a new metric, \textit{privacy protectability}, to characterize to what degree a video stream can be protected given a certain video analytics task. Such a metric has strong operational meaning. For example, low protectability means that it may be necessary to set up an overall secure environment. We can also evaluate a privacy protection scheme, e.g., assume it obfuscates the video data, what level of protection this scheme has achieved after obfuscation. Our definition of privacy protectability is rooted in information theory and we develop efficient algorithms to estimate the metric. We use experiments on real data to validate that our metric is consistent with empirical measurements on how well a video stream can be protected for a video analytics task.

相關內容

In many industrial applications, obtaining labeled observations is not straightforward as it often requires the intervention of human experts or the use of expensive testing equipment. In these circumstances, active learning can be highly beneficial in suggesting the most informative data points to be used when fitting a model. Reducing the number of observations needed for model development alleviates both the computational burden required for training and the operational expenses related to labeling. Online active learning, in particular, is useful in high-volume production processes where the decision about the acquisition of the label for a data point needs to be taken within an extremely short time frame. However, despite the recent efforts to develop online active learning strategies, the behavior of these methods in the presence of outliers has not been thoroughly examined. In this work, we investigate the performance of online active linear regression in contaminated data streams. Our study shows that the currently available query strategies are prone to sample outliers, whose inclusion in the training set eventually degrades the predictive performance of the models. To address this issue, we propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator. Our approach strikes a balance between exploring unseen regions of the input space and protecting against outliers. Through numerical simulations, we show that the proposed method is effective in improving the performance of online active learning in the presence of outliers, thus expanding the potential applications of this powerful tool.

Prescriptive process monitoring methods seek to optimize the performance of business processes by triggering interventions at runtime, thereby increasing the probability of positive case outcomes. These interventions are triggered according to an intervention policy. Reinforcement learning has been put forward as an approach to learning intervention policies through trial and error. Existing approaches in this space assume that the number of resources available to perform interventions in a process is unlimited, an unrealistic assumption in practice. This paper argues that, in the presence of resource constraints, a key dilemma in the field of prescriptive process monitoring is to trigger interventions based not only on predictions of their necessity, timeliness, or effect but also on the uncertainty of these predictions and the level of resource utilization. Indeed, committing scarce resources to an intervention when the necessity or effects of this intervention are highly uncertain may intuitively lead to suboptimal intervention effects. Accordingly, the paper proposes a reinforcement learning approach for prescriptive process monitoring that leverages conformal prediction techniques to consider the uncertainty of the predictions upon which an intervention decision is based. An evaluation using real-life datasets demonstrates that explicitly modeling uncertainty using conformal predictions helps reinforcement learning agents converge towards policies with higher net intervention gain

Recently Chen and Poor initiated the study of learning mixtures of linear dynamical systems. While linear dynamical systems already have wide-ranging applications in modeling time-series data, using mixture models can lead to a better fit or even a richer understanding of underlying subpopulations represented in the data. In this work we give a new approach to learning mixtures of linear dynamical systems that is based on tensor decompositions. As a result, our algorithm succeeds without strong separation conditions on the components, and can be used to compete with the Bayes optimal clustering of the trajectories. Moreover our algorithm works in the challenging partially-observed setting. Our starting point is the simple but powerful observation that the classic Ho-Kalman algorithm is a close relative of modern tensor decomposition methods for learning latent variable models. This gives us a playbook for how to extend it to work with more complicated generative models.

In federated submodel learning (FSL), a machine learning model is divided into multiple submodels based on different types of data used for training. Each user involved in the training process only downloads and updates the submodel relevant to the user's local data, which significantly reduces the communication cost compared to classical federated learning (FL). However, the index of the submodel updated by the user and the values of the updates reveal information about the user's private data. In order to guarantee information-theoretic privacy in FSL, the model is stored at multiple non-colluding databases, and the user sends queries and updates to each database in such a way that no information is revealed on the updating submodel index or the values of the updates. In this work, we consider the practical scenario where the multiple non-colluding databases are allowed to have arbitrary storage constraints. The goal of this work is to develop read-write schemes and storage mechanisms for FSL that efficiently utilize the available storage in each database to store the submodel parameters in such a way that the total communication cost is minimized while guaranteeing information-theoretic privacy of the updating submodel index and the values of the updates. As the main result, we consider both heterogeneous and homogeneous storage constrained databases, and propose private read-write and storage schemes for the two cases.

Deep reinforcement learning (RL) has shown immense potential for learning to control systems through data alone. However, one challenge deep RL faces is that the full state of the system is often not observable. When this is the case, the policy needs to leverage the history of observations to infer the current state. At the same time, differences between the training and testing environments makes it critical for the policy not to overfit to the sequence of observations it sees at training time. As such, there is an important balancing act between having the history encoder be flexible enough to extract relevant information, yet be robust to changes in the environment. To strike this balance, we look to the PID controller for inspiration. We assert the PID controller's success shows that only summing and differencing are needed to accumulate information over time for many control tasks. Following this principle, we propose two architectures for encoding history: one that directly uses PID features and another that extends these core ideas and can be used in arbitrary control tasks. When compared with prior approaches, our encoders produce policies that are often more robust and achieve better performance on a variety of tracking tasks. Going beyond tracking tasks, our policies achieve 1.7x better performance on average over previous state-of-the-art methods on a suite of high dimensional control tasks.

Governments and industries have widely adopted differential privacy as a measure to protect users' sensitive data, creating the need for new implementations of differentially private algorithms. In order to properly test and audit these algorithms, a suite of tools for testing the property of differential privacy is needed. In this work we expand this testing suite and introduce R\'enyiTester, an algorithm that can verify if a mechanism is R\'enyi differentially private. Our algorithm computes computes a lower bound of the R\'enyi divergence between the distributions of a mechanism on neighboring datasets, only requiring black-box access to samples from the audited mechanism. We test this approach on a variety of pure and R\'enyi differentially private mechanisms with diverse output spaces and show that R\'enyiTester detects bugs in mechanisms' implementations and design flaws. While detecting that a general mechanism is differentially private is known to be NP hard, we empirically show that tools like R\'enyiTester provide a way for researchers and engineers to decrease the risk of deploying mechanisms that expose users' privacy.

Cell type deconvolution is a computational method that estimates the proportions of different cell types within bulk transcriptomics data by leveraging information from reference single-cell RNA sequencing data. Despite its origin as a simple linear regression model, this approach faces challenges due to technical and biological variability and biases between the bulk and single-cell datasets. While several new methods have been developed, most only provide point estimates of cell type proportions, neglecting the uncertainty inherent in these estimates. Consequently, false positives can arise when comparing changes in cell type proportions across multiple individuals. In this paper, we introduce MEAD, a comprehensive statistical framework for efficient cell type deconvolution. Our approach constructs asymptotically valid confidence intervals for individual cell type proportions, as well as for quantifying changes in cell type proportions across multiple individuals. Our analysis accounts for factors such as biological variability in gene expressions, gene-gene dependence, cross-platform biases, and sequencing errors, without relying on parametric assumptions about the data distributions. Moreover, we establish necessary and sufficient conditions for identifying cell type proportions in the presence of platform-specific biases across sequencing technologies.

Graph machine learning has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To tackle the challenge, automated graph machine learning, which aims at discovering the best hyper-parameter and neural architecture configuration for different graph tasks/data without manual design, is gaining an increasing number of attentions from the research community. In this paper, we extensively discuss automated graph machine approaches, covering hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We briefly overview existing libraries designed for either graph machine learning or automated machine learning respectively, and further in depth introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning. Last but not least, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive discussion of approaches, libraries as well as directions for automated graph machine learning.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司