亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning (DL) has shown great success in many human-related tasks, which has led to its adoption in many computer vision based applications, such as security surveillance systems, autonomous vehicles and healthcare. Such safety-critical applications have to draw their path to success deployment once they have the capability to overcome safety-critical challenges. Among these challenges are the defense against or/and the detection of the adversarial examples (AEs). Adversaries can carefully craft small, often imperceptible, noise called perturbations to be added to the clean image to generate the AE. The aim of AE is to fool the DL model which makes it a potential risk for DL applications. Many test-time evasion attacks and countermeasures,i.e., defense or detection methods, are proposed in the literature. Moreover, few reviews and surveys were published and theoretically showed the taxonomy of the threats and the countermeasure methods with little focus in AE detection methods. In this paper, we focus on image classification task and attempt to provide a survey for detection methods of test-time evasion attacks on neural network classifiers. A detailed discussion for such methods is provided with experimental results for eight state-of-the-art detectors under different scenarios on four datasets. We also provide potential challenges and future perspectives for this research direction.

相關內容

Speaker verification systems have been widely used in smart phones and Internet of things devices to identify a legitimate user. In recent work, it has been shown that adversarial attacks, such as FAKEBOB, can work effectively against speaker verification systems. The goal of this paper is to design a detector that can distinguish an original audio from an audio contaminated by adversarial attacks. Specifically, our designed detector, called MEH-FEST, calculates the minimum energy in high frequencies from the short-time Fourier transform of an audio and uses it as a detection metric. Through both analysis and experiments, we show that our proposed detector is easy to implement, fast to process an input audio, and effective in determining whether an audio is corrupted by FAKEBOB attacks. The experimental results indicate that the detector is extremely effective: with near zero false positive and false negative rates for detecting FAKEBOB attacks in Gaussian mixture model (GMM) and i-vector speaker verification systems. Moreover, adaptive adversarial attacks against our proposed detector and their countermeasures are discussed and studied, showing the game between attackers and defenders.

Visual detection is a key task in autonomous driving, and it serves as one foundation for self-driving planning and control. Deep neural networks have achieved promising results in various computer vision tasks, but they are known to be vulnerable to adversarial attacks. A comprehensive understanding of deep visual detectors' vulnerability is required before people can improve their robustness. However, only a few adversarial attack/defense works have focused on object detection, and most of them employed only classification and/or localization losses, ignoring the objectness aspect. In this paper, we identify a serious objectness-related adversarial vulnerability in YOLO detectors and present an effective attack strategy aiming the objectness aspect of visual detection in autonomous vehicles. Furthermore, to address such vulnerability, we propose a new objectness-aware adversarial training approach for visual detection. Experiments show that the proposed attack targeting the objectness aspect is 45.17% and 43.50% more effective than those generated from classification and/or localization losses on the KITTI and COCO_traffic datasets, respectively. Also, the proposed adversarial defense approach can improve the detectors' robustness against objectness-oriented attacks by up to 21% and 12% mAP on KITTI and COCO_traffic, respectively.

Deep generative models have gained much attention given their ability to generate data for applications as varied as healthcare to financial technology to surveillance, and many more - the most popular models being generative adversarial networks and variational auto-encoders. Yet, as with all machine learning models, ever is the concern over security breaches and privacy leaks and deep generative models are no exception. These models have advanced so rapidly in recent years that work on their security is still in its infancy. In an attempt to audit the current and future threats against these models, and to provide a roadmap for defense preparations in the short term, we prepared this comprehensive and specialized survey on the security and privacy preservation of GANs and VAEs. Our focus is on the inner connection between attacks and model architectures and, more specifically, on five components of deep generative models: the training data, the latent code, the generators/decoders of GANs/ VAEs, the discriminators/encoders of GANs/ VAEs, and the generated data. For each model, component and attack, we review the current research progress and identify the key challenges. The paper concludes with a discussion of possible future attacks and research directions in the field.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

Detecting objects in aerial images is challenging for at least two reasons: (1) target objects like pedestrians are very small in pixels, making them hardly distinguished from surrounding background; and (2) targets are in general sparsely and non-uniformly distributed, making the detection very inefficient. In this paper, we address both issues inspired by observing that these targets are often clustered. In particular, we propose a Clustered Detection (ClusDet) network that unifies object clustering and detection in an end-to-end framework. The key components in ClusDet include a cluster proposal sub-network (CPNet), a scale estimation sub-network (ScaleNet), and a dedicated detection network (DetecNet). Given an input image, CPNet produces object cluster regions and ScaleNet estimates object scales for these regions. Then, each scale-normalized cluster region is fed into DetecNet for object detection. ClusDet has several advantages over previous solutions: (1) it greatly reduces the number of chips for final object detection and hence achieves high running time efficiency, (2) the cluster-based scale estimation is more accurate than previously used single-object based ones, hence effectively improves the detection for small objects, and (3) the final DetecNet is dedicated for clustered regions and implicitly models the prior context information so as to boost detection accuracy. The proposed method is tested on three popular aerial image datasets including VisDrone, UAVDT and DOTA. In all experiments, ClusDet achieves promising performance in comparison with state-of-the-art detectors. Code will be available in \url{//github.com/fyangneil}.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably the revolutionary techniques are in the area of computer vision such as plausible image generation, image to image translation, facial attribute manipulation and similar domains. Despite the significant success achieved in computer vision field, applying GANs over real-world problems still have three main challenges: (1) High quality image generation; (2) Diverse image generation; and (3) Stable training. Considering numerous GAN-related research in the literature, we provide a study on the architecture-variants and loss-variants, which are proposed to handle these three challenges from two perspectives. We propose loss and architecture-variants for classifying most popular GANs, and discuss the potential improvements with focusing on these two aspects. While several reviews for GANs have been presented, there is no work focusing on the review of GAN-variants based on handling challenges mentioned above. In this paper, we review and critically discuss 7 architecture-variant GANs and 9 loss-variant GANs for remedying those three challenges. The objective of this review is to provide an insight on the footprint that current GANs research focuses on the performance improvement. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

There is a rising interest in studying the robustness of deep neural network classifiers against adversaries, with both advanced attack and defence techniques being actively developed. However, most recent work focuses on discriminative classifiers, which only model the conditional distribution of the labels given the inputs. In this paper we propose the deep Bayes classifier, which improves classical naive Bayes with conditional deep generative models. We further develop detection methods for adversarial examples, which reject inputs that have negative log-likelihood under the generative model exceeding a threshold pre-specified using training data. Experimental results suggest that deep Bayes classifiers are more robust than deep discriminative classifiers, and the proposed detection methods achieve high detection rates against many recently proposed attacks.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司